Abstract:
The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
Abstract:
The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
Abstract:
The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
Abstract:
A communication circuit (10) and method updates an active link set list (50) in an asynchronous wireless communication system. In one embodiment, the communication circuit (10) may be a wireless device (600) or any other suitable communication device. The communication circuit (10) includes candidate reference link determination circuitry (30) to receive an active link set update message (60) and in response, to create the candidate list of reference links (20) from the active link set list (50). The candidate reference link determination circuitry (30) creates the candidate list of reference links based on, for example, an indication in the received active link set update message (60) to retain links from the active link set list (50).
Abstract:
An electronic device support includes a V-shaped base, a supporting leg, a cable and a number of lights. The V-shaped base includes a pair of legs extending from an apex of the V-shaped base. The supporting leg is pivotably connected to the V-shaped base adjacent to the apex. The cable is embedded in at least one of the legs and the supporting leg and includes a connector plug electrically connected to the other end. The lights are rotatably mounted on one of the distal end of the legs of the base away from the apex of the V-shaped base.
Abstract:
A supporting stand for a portable device includes a base portion, a supporting portion, at least one heat dissipation device and a platform. The supporting portion extends upwardly from the base portion. The at least one heat dissipation device is fastened on the supporting portion. The platform obliquely connects between the supporting portion and the base portion for supporting the portable device.
Abstract:
The present invention discloses an radiation imaging system, comprising: an accelerator for generating rays which penetrate through the objects to be inspected and an synchronous signal; a detector with a plurality of detecting modules, adapted for detecting rays; a signal processor for generating a selection signal according to the synchronous signal, so as to select a detecting module for detecting the rays; a data converter for converting the signal detected by said detecting module into digital data, and then buffering the digital data in said signal processor; and a communication controller connected to an image processor, adapted for transmitting the digital data buffered in said signal processor to said image processor. The system according to the present invention allows high-speed and stable data acquisition and data conversion and accurate and reliable data transmission, when the data amount is significant.
Abstract:
A vehicle-carried radiation inspection system has a simple structure with advantages of convenient operation, little scanning blind area and reliable safety performance. The system includes a loading vehicle, a lifting device mounted to the loading vehicle and a radiation scanning inspection device fixedly mounted to the lifting device so as to ascend/descend together with the lifting device. The lifting device is configured to enable the lifting device and the radiation scanning inspection device as a whole to be apart from the ground by a predetermined safety distance when the loading vehicle is moving, and to enable the minimum distance therebetween during inspection to be less than the predetermined safety distance. The radiation scanning inspection device may be switched between higher and lower positions as required with the ascending/descending of its combination with the lifting device.
Abstract:
An interactive whiteboard system includes a combination electrical writable and dry erase marker, an interactive whiteboard to receive writing on the interactive whiteboard with the combination electrical writable and dry erase marker, and a computer operatively coupled to the interactive whiteboard to capture writing on the interactive whiteboard with the combination electrical writable and dry erase marker.