Abstract:
A cooling system for a turbine blade of a turbine engine having a bifurcated mid-chord cooling chamber for reducing the temperature of the blade. The bifurcated mid-chord cooling chamber may be formed from a pressure side serpentine cooling channel and a suction side serpentine cooling channel with cooling fluids passing through the pressure side serpentine cooling channel in a direction from the trailing edge toward the leading edge and in an opposite direction through the suction side serpentine cooling channel. The pressure side and suction side serpentine cooling channels may flow counter to each other, thereby yielding a more uniform temperature distribution than conventional serpentine cooling channels.
Abstract:
A cooling arrangement in a gas turbine system (120). The arrangement includes a plurality of flow network units (208) to transfer heat to cooling fluid, at least one unit including first (218), second (220), and third (222) flow sections between openings (64a) in a first wall (66) and an opening in a second wall (68) to pass cooling fluid through the walls. The first section includes first flow paths, between the openings in the first wall and the second section, extending to the second section. The third section includes third flow paths, between the second section and the opening in the second wall, to effect flow of cooling fluid. The second section includes one or more cooling fluid flow paths between the first section and the third section. The number of flow paths in the second section is fewer than the number of first flow paths and fewer than the number of third flow paths.
Abstract:
A duplex turbine nozzle includes a row of different first and second vanes alternating circumferentially between radially outer and inner bands in vane doublets having axial splitlines therebetween. The vanes have opposite pressure and suction sides spaced apart in each doublet to define an inboard flow passage therebetween, and corresponding outboard flow passages between doublets. The vanes have different patterns of film cooling holes with larger cooling flow density along the outboard passages than along the inboard passages.
Abstract:
A cooling system for a transition duct for routing a gas flow from a combustor to the first stage of a turbine section in a combustion turbine engine is disclosed. The transition duct may have a multi-panel outer wall formed from an inner panel having an inner surface that defines at least a portion of a hot gas path plenum and an intermediate panel positioned radially outward from the inner panel such that at least one cooling chamber is formed between the inner and intermediate panels. The transition duct may also include an outer panel. The inner, intermediate and outer panels may include one or more metering holes for passing cooling fluids between cooling chambers for cooling the panels. The intermediate and outer panels may be secured with an attachment system coupling the panels to the inner panel such that the intermediate and outer panels may move in-plane.
Abstract:
A component wall in a turbine engine includes a substrate, a diffusion section, and at least one cooling passage. The diffusion section is located in a surface of the substrate and is defined by a first sidewall and a second sidewall. The cooling passage(s) include an outlet portion through which cooling air exits in a direction toward the first sidewall. The outlet portion includes a rear section, a front section, and an inner wall having proximal and distal ends. The rear section is located between the first and second sidewalls. The front section extends between the first sidewall and the distal end of the inner wall. The first sidewall extends into the outlet portion of the cooling passage(s) to the inner wall and extends from the first lateral wall to the second lateral wall so as to block the front section of the outlet portion.
Abstract:
A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).
Abstract:
A seal member for effecting a seal preventing fluid flow in an axial direction through an annular space formed between two relatively moving components including a rotatable shaft and a stator structure. The seal member includes a plurality of flexible seal strips. Each seal strip includes a planar plate extending radially through the annular space and having a radially outer end supported to the stator structure and a radially inner end defining a tip portion extending widthwise in the axial direction engaged in sliding contact with a peripheral surface of the rotatable shaft. At least one of the seal strips includes a plurality of perforations extending through the seal strip and located between a leading edge and a trailing edge of the seal strip for effecting an increased flexibility of the seal strip adjacent to the tip portion.
Abstract:
A film cooling structure formed in a component wall of a turbine engine and a method of making the film cooling structure. The film cooling structure includes a plurality of individual diffusion sections formed in the wall, each diffusions section including a single cooling passage for directing cooling air toward a protuberance of a wall defining the diffusion section. The film cooling structure may be formed with a masking template including apertures defining shapes of a plurality of to-be-formed diffusion sections in the wall. A masking material can be applied to the wall into the apertures in the masking template so as to block outlets of cooling passages exposed through the apertures. The masking template can be removed and a material may be applied on the outer surface of the wall such that the material defines the diffusion sections once the masking material is removed.
Abstract:
A component in a gas turbine engine includes an airfoil extending radially outwardly from a platform associated with the airfoil. The airfoil includes opposed pressure and suction sidewalls, which converge at a first location defined at a leading edge of the airfoil and at a second location defined at a trailing edge of the airfoil opposed from the leading edge. The component includes a built-up surface adjacent to the leading edge at an intersection between the pressure sidewall and the platform, and at least one cooling passage at least partially within the built-up surface at the intersection between the pressure sidewall and the platform. The at least one cooling passage is in fluid communication with a main cooling channel within the airfoil and has an outlet at the platform for providing cooling fluid directly from the main cooling channel to the platform.
Abstract:
A method for forming holes in an object is provided. The method includes providing an electrochemical machining (ECM) electrode including a first section having insulation that circumscribes the first section, and a second section having insulation that extends only partially around the second section. The method also includes inserting the electrode into the object, such that in a single pass the electrode forms a hole that includes a first portion having a first cross-sectional area and a second portion having a second cross-sectional area.