Abstract:
A light source device includes a light source, a coupling lens, a first opening plate, a second opening plate, a photoreceptor, a package member, a cover glass, a half mirror, and a light source control device. In relation to a main-scanning corresponding direction and a sub-scanning corresponding direction, divergence angles θm and θs of a light beam output from the light source, emission angles θm1 and θs1 of a light beam passing through an opening portion A, and emission angles θm2 and θs2 of a light beam passing through an opening portion B satisfy relationships |(θm1−θm2)/θm|≦0.085 and |(θs1−θs2)/θs|≦0.085.
Abstract:
An optical scanning device includes a first optical system for guiding light beams emitted from a plurality of light emitting units to an optical deflector, and a second optical system for focusing the light beams to optically scan a surface to be scanned. At least one of the first optical system and the second optical system includes a resin lens having a diffractive surface. The diffractive surface includes a diffractive portion and a refractive portion. A power of the diffractive portion and a power of the refractive portion cancel each other.
Abstract:
An optical scanning device includes a lens having a negative optical power at least in a sub-scanning direction and a lens having a positive optical power at least in the sub-scanning direction between a light source and a deflecting unit. The optical scanning device further includes a coupling lens and an adjusting lens whose positions can be adjusted in an optical axis direction and then bonded with ultraviolet curing resin. Therefore, the magnification of an optical system can be adjusted and consequently a desired scan-line interval can be obtained.
Abstract:
A surface-emitting laser array includes a plurality of light emitting parts arranged in a two-dimensional formation having two orthogonal directions. When the plurality of light emitting parts are orthogonally projected on a virtual line parallel to one of the two orthogonal directions, a spacing between two of the plurality of light emitting parts along the virtual line is equal to an integral multiple of a predetermined value. The plurality of light emitting parts include a first light emitting part, a second light emitting part adjacent to the first light emitting part, and a third light emitting part adjacent to the second light emitting part, and a spacing between the first and second light emitting parts differs from a spacing between the second and third light emitting parts.
Abstract:
A surface-emission laser array comprises a plurality of surface-emission laser diode elements arranged in the form of a two-dimensional array, wherein a plurality of straight lines drawn perpendicularly to a straight line extending in a first direction from respective centers of the plurality of surface emission laser diode elements aligned in a second direction perpendicular to the first direction, are formed with generally equal interval in the first direction, the plurality of surface-emission laser diode elements are aligned in the first direction with an interval set to a reference value, and wherein the number of the surface-emission laser diode elements aligned in the first direction is smaller than the number of the surface-emission laser diode elements aligned in the second direction.
Abstract:
An optical scanning device includes a light source having light emitting points for emitting light beams, a coupling optical element that couples the light beams, a deflecting unit that deflects and scans the light beams, and a scanning optical system that focus the light beams to form an image. The optical scanning device satisfies the following condition: F tan(θ/2)+A
Abstract translation:光学扫描装置包括具有用于发射光束的发光点的光源,耦合光束的耦合光学元件,偏转和扫描光束的偏转单元,以及聚焦光束以形成的扫描光学系统 一个图像。 光学扫描装置满足以下条件:F tan(θ/ 2)+ A
Abstract:
An optical scanning device includes a lens having a negative optical power at least in a sub-scanning direction and a lens having a positive optical power at least in the sub-scanning direction between a light source and a deflecting unit. The optical scanning device further includes a coupling lens and an adjusting lens whose positions can be adjusted in an optical axis direction and then bonded with ultraviolet curing resin. Therefore, the magnification of an optical system can be adjusted and consequently a desired scan-line interval can be obtained.
Abstract:
By setting elements within the range that predetermined conditions are satisfied, for example, so that a size of a rotating polygon mirror is minimized, the rotating polygon mirror is made compact while the eclipse of light beams in the main scanning direction is prevented. The cost reduction of an apparatus is thus realized. The compact rotating polygon mirror reduces the consumption energy and the amount of heat generated in its drive system. Deteriorations in various optical characteristics including an increase in spot diameter of the light beam by temperature variation, uneven scanning pitch, and sub-scanning direction variation in beam pitch are suppressed.
Abstract:
An optical scanning device includes a first optical element that converts a cross-section shape of a light beam from a semiconductor laser to a desired shape; a second optical element that guides the light beam output from the first optical element to an optical deflector that deflects the light beam; and a third optical element that gathers the light beam deflected by the optical deflector onto a surface to be scanned to form a light spot thereby optically scanning the surface. At least one of the first optical element, the second optical element, and the third optical element includes a resin-made lens, at least one of the resin-made lenses has a power diffracting surface, and a surface shape of at least one of power diffracting surfaces is formed so that a power of a diffracting portion and a power of a refractive portion are cancelled out.
Abstract:
A scanning optical system leads the light fluxes deflected by the polygon mirror to a photosensitive drum. An absolute value of a lateral magnification in a main scanning direction is larger than an absolute value of a lateral magnification in a sub-scanning direction. Moreover, a beam diameter in the sub-scanning direction on a surface of the photosensitive drum is equal to or smaller than a beam diameter in the main scanning direction and larger than a scan line interval.