Abstract:
A high-contrast grating (HCG) structure and method of fabrication. The grating of the HCG is formed over a structural spacer layer, allowing a wider range of grating patterns, such as post and other forms which are lack structural support when fabricated over an air spacing beneath the grating elements. The technique involves etching the HCG grating, followed by oxidizing through this HCG grating into an oxide spacer layer beneath it creating a low-index area beneath the grating. This form of HCG reflector can be utilizes as upper and/or lower reflectors in fabricating vertical cavity surface emitting lasers (VCSELs).
Abstract:
Resonant optical cavity light emitting devices are disclosed, where the device includes a substrate, a first spacer region, a light emitting region, a second spacer region, and a reflector. The light emitting region is configured to emit a target emission deep ultraviolet wavelength, and is positioned at a separation distance from the reflector. The reflector may have a metal composition comprising elemental aluminum or may be a distributed Bragg reflector. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·λ/n. K is a constant ranging from 0.25 to less than 1, λ is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
Abstract:
VCSELs and methods having improved characteristics. In some embodiments, these include a semiconductor substrate; a vertical-cavity surface-emitting laser (VCSEL) on the substrate; a first electrical contact formed on the VCSEL; a second electrical contact formed on the substrate, wherein the VCSEL includes: a first resonating cavity having first and second mirrors, at least one of which partially transmits light incident on that mirror, wherein the first second mirrors are electrically conductive. A first layer is between the first mirror and the second mirror and has a first aperture that restricts the path of current flow. A second layer is between the first layer and the second mirror and also restricts the electrical current path. A multiple-quantum-well (MQW) structure is between the first mirror and the second mirror, wherein the first and second apertures act together to define a path geometry of the current through the MQW structure.
Abstract:
A light emitting element includes at least a first light reflecting layer 41 formed on a surface of a substrate 11, a laminated structural body 20 made of a first compound semiconductor layer 21, an active layer 23 and a second compound semiconductor layer 22 formed on the first light reflecting layer 41, and a second electrode 32 and a second light reflecting layer 42 formed on the second compound semiconductor layer 22, the laminated structural body 20 is configured from a plurality of laminated structural body units 20A, a light emitting element unit 10A is configured from each of the laminated structural body units 20A, and a resonator length in the light emitting element unit 10A is different in every light emitting element unit.
Abstract:
A disclosed surface-emitting laser module includes a surface-emitting laser formed on a substrate to emit light perpendicular to its surface, a package including a recess portion in which the substrate having the surface-emitting laser is arranged, and a transparent substrate arranged to cover the recess portion of the package and the substrate having the surface-emitting laser such that the transparent substrate and the package are connected on a light emitting side of the surface-emitting laser. In the surface-emitting laser module, a high reflectance region and a low reflectance region are formed within a region enclosed by an electrode on an upper part of a mesa of the surface-emitting laser, and the transparent substrate is slanted to the surface of the substrate having the surface-emitting laser in a polarization direction of the light emitted from the surface-emitting laser determined by the high reflectance region and the low reflectance region.
Abstract:
Vertical-cavity surface-emitting lasers (“VCSELs”) and VCSEL arrays are disclosed. In one aspect, a surface-emitting laser includes a grating layer having a sub-wavelength grating to form a resonant cavity with a reflective layer for a wavelength of light to be emitted from a light-emitting layer and an aperture layer disposed within the resonant cavity. The VCSEL includes a charge carrier transport layer disposed between the grating layer and the light-emitting layer. The transport layer has a gap adjacent to the sub-wavelength grating and a spacer region between the gap and the light-emitting layer. The spacer region and gap are dimensioned to be substantially transparent to the wavelength. The aperture layer directs charge carriers to enter a region of the light-emitting layer adjacent to an aperture in the aperture layer and the aperture confines optical modes to be emitted from the light-emitting layer.
Abstract:
A surface emitting laser for emitting light with a wavelength λ includes a first reflection mirror provided on a semiconductor substrate; a resonator region including an active layer provided on the first reflection mirror; a second reflection mirror, including plural low refraction index layers and plural high refraction index layers, provided on the resonator region; a contact layer provided on the second reflection mirror; a third reflection mirror provided on the contact layer; and an electric current narrowing layer provided between the active layer and the second reflection mirror or in the second reflection mirror. Optical lengths of at least one of thicknesses of the low refraction index layers and the high refraction index layers formed between the electric current narrowing layer and the contact layer are (2N+1)×λ/4 (N=1, 2, . . . ).
Abstract:
There is provided a surface emitting semiconductor laser including: a substrate; and a semiconductor layer including: a first semiconductor multilayer film having plural sets of specific layers, a second semiconductor multilayer film having plural sets of specific layers, and an active layer provided between them, so as to constitute a resonator.
Abstract:
A transistor device is provided that includes a gate electrode disposed between source and drain electrodes and overlying a quantum dot structure realized by a modulation doped quantum well structure. A potential barrier surrounds the quantum dot structure. The transistor device can be configured for operation as a single electron transistor by means for biasing the gate and source electrodes to allow for tunneling of a single electron from the source electrode through the potential barrier surrounding the quantum dot structure and into the quantum dot structure, and means for biasing the gate and drain electrodes to allow for selective tunneling of a single electron from the quantum dot structure through the potential barrier surrounding the quantum dot structure to the drain electrode, wherein the selective tunneling of the single electron is based upon spin state of the single electron.