Abstract:
A method of forming relatively hard materials is disclosed. The method includes providing tooling for performing the forming operation on a strip (10) of relatively hard material. The tooling includes a forming tool (22) and a mating die (24) coupled to a high speed stamping and forming machine (70). The tooling and machine are arranged so that the forming operation is performed within a time period that is less than the stress relaxation time constant for the material being formed.
Abstract:
A connector for electrically connecting circuit members having a high density of contact pads located in an area array, the connector having an area array specific holder that is simple to produce for retainably positioning mass-produced standardized contact modules containing a deformable contact within a module body for interconnecting the contact pads, where the contact is constructed to be supportingly engaged by the module body to provide sufficient opposing spring force to effect a wiping interconnection between the contact and the contact pads.
Abstract:
A contact socket having ends and an intermediate portion for receiving a contact pin. The intermediate portion has a plurality of resilient beams which are designed to provide the necessary contact force while maintaining the insertion force at a low level. The beams are also designed to allow for improper insertion of the pin into the contact socket without damaging the resilient beams so that no permanent set of the beams takes place.
Abstract:
Chip carrier socket 2 comprises a socket body 24 having a rectangular base 30 and walls 34 extending normally from the edges 32 of the base. The walls can be pivotally moved inwardly of the recess which is defined by the walls after a chip carrier 12 has been placed in the recess. A frame 28 is provided in surrounding relationship to the walls 34 and is movable relative thereto between a first position and a second position. When the frame 28 is moved to the second position, the walls 34 are moved inwardly thereby to move the contact terminals 26 in the walls against terminal pads 20 on the leadless chip carrier 12. The frame 28 also may have an ejector means integral therewith which will eject the chip carrier from the socket when the frame is moved from a second position to the first position. The frame may also cam the walls outwardly to permit placement of the chip carrier in the recess under ZIF conditions.