Abstract:
A method of making an electrode material for use in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. The electrode material is a ruthenium-based material that includes ruthenium as the single largest constituent. The disclosed method includes hot-forming a layered structure that includes a ruthenium-based material core, an interlayer having a refractory metal disposed over the ruthenium-based material core, and a nickel-based cladding disposed over the interlayer.
Abstract:
A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
Abstract:
A corona igniter assembly 20 comprises an ignition coil assembly 22, a firing end assembly 24, and a metal tube 26 connecting the ignition coil assembly 22 to the firing end assembly 24. A rubber boot 28 is disposed in the metal tube 26 and compressed symmetrically between a coil output member 30 of the ignition coil assembly 22 and an insulator 42 of the firing end assembly 24. Thus, the rubber boot 28 fills any air gaps and provides a hermetic seal between the ignition coil assembly 22 and the firing end assembly 24 to prevent unwanted corona discharge from forming from those air gaps.
Abstract:
A corona igniter comprises an electrode with a central extended member extending along a central axis and a crown extending radially outwardly from the central extended member. The central extended member has an extended length and the crown has a crown length. The extended length is greater than the crown length such that the extended member approaches a piston more closely than the crown. In addition, the firing tips of the crown each present a first spherical radius which is less than a second spherical radius of the central extended member. Thus, if arcing occurs, it forms from the central extended member, rather than from the crown. Accordingly, the firing tips of the crown experience less wear and remain sharp. In addition, due to the sizes of the spherical radii, corona discharge is more likely to form from the firing tips than from the central extended member.
Abstract:
An electrode material for use with spark plugs and other ignition devices. The electrode material is a two-phase composite material that includes a matrix component and a dispersed component embedded in the matrix component. In a preferred embodiment, the matrix component is a precious-metal based material and the dispersed component includes a material that exhibits a high melting point and a low work function such as, for example, carbides, nitrides, and/or intermetallics. A process for forming the electrode material into a spark plug electrode is also provided.
Abstract:
A method of making an electrode material for use in a spark plug and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. The electrode material is a ruthenium-based material that includes a “fibrous” grain structure. The disclosed method includes hot-forming a ruthenium-based material into an elongated wire that includes the “fibrous” grain structure while intermittently annealing the ruthenium-based material as needed. The intermittent annealing is performed at a temperature that maintains the “fibrous” grain structure.
Abstract:
A spark plug assembly has a ceramic insulator with a metal outer shell surrounding at least a portion of the insulator. A ground electrode is operatively attached to the outer shell and a center electrode having an elongate body extends through the insulator. The center electrode and the ground electrode provide a spark gap. A force sensor is received about the insulator. An annular inner shell is received between the outer shell and the insulator, wherein the inner shell has a surface configured to confront the insulator along an axial direction.
Abstract:
Methods of making an insulator for a condition sensing spark plug and tooling that can be used to perform the various methods, the tooling and methods involving machining one or more channels in the insulator body. The machined channels can be used to accommodate one or more wires from a sensing, display, or processing device. In one particular example, the wires are thermocouple wires used to sense temperature in an internal combustion engine while the spark plug is in use. The methods and tooling may result in channels that are formed more precisely, economically, and efficiently.
Abstract:
A corona igniter comprises an electrode with a central extended member extending along a central axis and a crown extending radially outwardly from the central extended member. The central extended member has an extended length and the crown has a crown length. The extended length is greater than the crown length such that the extended member approaches a piston more closely than the crown. In addition, the firing tips of the crown each present a first spherical radius which is less than a second spherical radius of the central extended member. Thus, if arcing occurs, it forms from the central extended member, rather than from the crown. Accordingly, the firing tips of the crown experience less wear and remain sharp. In addition, due to the sizes of the spherical radii, corona discharge is more likely to form from the firing tips than from the central extended member.
Abstract:
A system and method for detecting resonant frequency of a corona igniter concurrent with operation of the corona igniter is provided. The method includes providing a plurality of pulses of energy to the corona igniter, each having a pulse duration and spaced from one another by a deadtime duration during which no energy is provided to the corona igniter. Each pulse duration is ceased before current flowing in the corona igniter crosses zero, and each zero crossing of the current occurs during one of the deadtime durations. The next pulse of energy is provided to the corona igniter in response to the zero crossing of the current. A resonant frequency value is then obtained based on a sum of the pulse and deadtime durations of two consecutive cycles, or the time between zero crossings. The resonant frequency values become more accurate over time, and the drive frequency is adjusted accordingly.