Abstract:
The present invention is a process for separating one or more components of a gas mixture. The process comprises passing the gas mixture over a membrane, which is selectively permeable to the component being separated, due to one or more reversible reactions between the component desired to be separated and a layer of active molten material immobilized in a suitable support material and/or encapsulated in a non-porous gas permeable polymer material.
Abstract:
The present invention is a process for separating ammonia from mixtures of other gases or from aqueous streams. The ammonia containing mixture is contacted with an anion exchange polymer cast into membrane form, which selectively permeates NH.sub.3 thereby providing a separation from the other components in the mixture. Alternatively, ammonia recovery may be achieved by employing the said anion exchange polymer as a selective, reversible NH.sub.3 sorbent.
Abstract:
In the catalytic reaction of ammonia or formamide with CO and H.sub.2, exceptionally high yields of mono- and di-methyl formamide are obtained among the reaction products when the reaction is carried out in the presence of a platinum group catalyst soluble in the reaction medium, particularly a compound or complex of ruthenium or rhodium, employing a relatively non-volatile polar solvent which does not contain an active methyl function and which does not enter into the reaction producing formamide compounds. The pressure employed is in the range of 3000-8000 psi with a hydrogen partial pressure of at least 1500 psi, the preferred solvent being sulfolane.
Abstract:
Benzene or an alkylbenzene is reacted with hydrogen and an alkali metal such as potassium in the presence of a polyamine to produce cyclohexene or alkylcyclohexene and alkali metal hydride. The polyamine contains only C, N and H and has at least three nitrogens. Each nitrogen is linked to three carbons and each carbon bridge is at least two methylenes long. Representative polyamines are hexamethyl hexacyclen, hexamethyl triethylene tetraamine, tris(2-dimethylamino ethyl)amine and octamethyl pentaethylene hexamine. Cyclohexene is produced at high ratios with respect to cyclohexane.