Abstract:
A system and method for removing ammonia from an ammonia-containing liquid is described. The system comprises a primary heat exchanger 12 for heating the ammonia-containing liquid to operational temperature, an ammonia stripper 14 for stripping ammonia from the ammonia-containing liquid from the primary heat exchanger and discharging it as ammonia-containing gas, and an acid scrubber 16 for reacting the ammonia in the ammonia-containing gas with acid to form an ammonium salt. The acid scrubber comprises a scrubbed air outlet 32 in fluid communication with a hot air inlet 20 of the ammonia stripper, such that scrubbed air which is discharged from the acid scrubber may be recycled for use in the ammonia stripper. Also described is a system and method for removing ammonia from an ammonia-containing liquid, wherein the system comprises a cold-water scrubber for removing ammonia from the ammonia-containing gas discharged from the ammonia stripper.
Abstract:
This invention describes a novel recovery method of ammonia through the electrocoagulation process, which may be applied in the industrial as well as the environmental sectors. The present invention has a significant impact not only on recovering the ammonia content from the Solvay effluent, but also for recovering the ammonia from landfill leachate and different sources of wastewater where high concentrations of ammonia can be found. This invention has economic benefits in recovering ammonia and reducing the required energy in such processes. Another impact is the environmental one, where ammonia can cause problems such as toxicity to the organisms living in the soil or water bodies, and could also decrease the concentration of the dissolved oxygen.
Abstract:
A system and method for removing ammonia from an ammonia-containing liquid is disclosed. The system comprises a primary heat exchanger 12 for heating the ammonia-containing liquid to operational temperature, an ammonia stripper 14 for stripping ammonia from the ammonia-containing liquid from the primary heat exchanger and discharging it as ammonia-containing gas, and an acid scrubber 16 for reacting the ammonia in the ammonia-containing gas with acid to form an ammonium salt. The acid scrubber comprises a scrubbed air outlet 32 in fluid communication with a hot air inlet 20 of the ammonia stripper, such that scrubbed air which is discharged from the acid scrubber may be recycled for use in the ammonia stripper. Also disclosed is a system and method for removing ammonia from an ammonia-containing liquid, wherein the system comprises a cold-water scrubber for removing ammonia from the ammonia-containing gas discharged from the ammonia stripper.
Abstract:
The present invention is a process, a method, and system for recovery and concentration of dissolved ammonium bicarbonate from a wastewater containing ammonia (NH3) using gas separation, condensation, filtration, and crystallization, each at controlled operating temperatures. The present invention includes 1) removal of ammonia from waste (sludges, semi-solids, and solids and liquids) without the use of chemicals at a temperature of at least 80 degrees Celsius, 2) mixing of the gaseous ammonia with carbon dioxide and water vapor and concentrating dissolved ammonium carbonate and ammonium bicarbonate using reverse osmosis at a temperature of between about 35 and 50 degrees Celsius, and 3) crystallizing concentrated dissolved ammonium carbonate and ammonium bicarbonate at a temperature of less than about 35 degrees Celsius to form solid ammonium bicarbonate and ammonium carbonate.
Abstract:
Sludge from an anaerobic digester is treated to recover one or more of fibers, or solids or liquids with a high nutrient content. The solids or liquids can be used as a fertilizer. The fibers can be used in a plant growing medium. Solids are separated from liquids in the sludge and dried. The solids may be dried to produce a flake or pellet. Ammonia in the liquids is recovered and used to produce a concentrated acidic ammonium salt solution. This solution may be mixed with the solids to produce a nitrogen enhanced solid. The fibers and solids or liquids can also be used in combination to produce an enhanced plant growing medium. A device and process for removing ammonia from a liquid can be used in the system or separately.
Abstract:
A system for ammonia distillation may include a condenser to condense ammonia vapor into liquid anhydrous ammonia, a flush tank to receive a flushed portion of the liquid anhydrous ammonia, a collection tank to receive a collected portion of the liquid anhydrous ammonia, and a corrosion inhibitor dispenser to transfer a corrosion inhibitor to the collected portion of the liquid anhydrous ammonia to form corrosion-inhibiting liquid anhydrous ammonia.
Abstract:
A method of recovering ammonia by the distillation of an aqueous solution containing ammonia, carbon dioxide and hydrogen cyanide. The distillation is conducted using a distillation apparatus having at least its portion which comes into contact with the aqueous solution made of an alloy 1 or alloy 2. The alloy 1 contains 3% by weight or more of molybdenum, 15% by weight or more of nickel and 15% by weight or more of chromium. The alloy 2 contains 1% by weight or more of molybdenum, 9% by weight or less of nickel and 20% by weight or more of chromium. The use of the alloy 1 or alloy 2 prevents the corrosion of the distillation apparatus and enables the stable recovery of ammonia for a long period of time.
Abstract:
A method of recovering ammonia by the distillation of an aqueous solution containing ammonia, carbon dioxide and hydrogen cyanide. The distillation is conducted using a distillation apparatus having at least its portion which comes into contact with the aqueous solution made of an alloy 1 or alloy 2. The alloy 1 contains 3% by weight or more of molybdenum, 15% by weight or more of nickel and 15% by weight or more of chromium. The alloy 2 contains 1% by weight or more of molybdenum, 9% by weight or less of nickel and 20% by weight or more of chromium. The use of the alloy 1 or alloy 2 prevents the corrosion of the distillation apparatus and enables the stable recovery of ammonia for a long period of time.
Abstract:
In a sewage treatment plant, dissolved ammonium is extracted from the waste-water stream, and is transferred to a body of secondary water. The secondary water is passed through an electrolysis station, where the ammonium is transformed to nitrogen gas. The capture and transfer can be done by ion-exchange, the electrolysis then being done on the regenerant water. Or the capture and transfer can be done by first transforming the dissolved ammonium to ammonia gas by raising the pH of the waste-water, then passing the ammonia gas through acidic secondary-water, in which the ammonia dissolves, the electrolysis then being done on the acid-water. The electrolysed, ammonium-diminished, secondary-water can be re-used in further capture/transfer episodes. The secondary-water does not mix with the waste-water stream.