Abstract:
A lower shield layer is formed by being embedded in a first recess formed in an under layer. Accordingly, the distance between the lower shield layer and a slider can be reduced. Also, a second metal layer is formed from above a gap layer covering an electrode extracting layer over above the under layer hindwards therefrom. Accordingly, the second metal layer can be brought closer to the slider side than an upper shield layer. Consequently, the thermal dissipation effects of the thin-film magnetic head can be improved.
Abstract:
A thin film magnetic head with a metal lamination part and method of manufacturing the same are provided. The thin film magnetic head including a metal lamination part in which an upper metal layer is laminated on a lower metal layer. The metal lamination part is formed in the laminated structure. An interlayer connection surface between the lower metal layer and the upper metal layer of the metal lamination part is formed in a concave shape that is curved toward the lower metal layer.
Abstract:
In a thin film magnetic head, a face surface faces a recording medium and a front surface of an upper core layer is a curved surface which gradually retreats in a height direction generally perpendicular to the face surface as it approaches both sides thereof, and the thickness of the upper core layer gradually increases in the height direction. It is thus possible to appropriately suppress the occurrence of side fringing, efficiently cause a magnetic flux to flow from the upper core layer to an upper pole layer, and make the thin film magnetic head adaptable to a higher recording density.
Abstract:
A thin-film magnetic head includes a first coil layer disposed at a lower core layer side of the interface between an upper core layer and an upper magnetic-pole layer, which are joined to each other, and a second coil layer disposed at the upper core layer side of the interface between the upper core layer and the upper magnetic-pole layer. The thickness of a coil conductor of the first coil layer is set smaller than the thickness of a coil conductor of the second coil layer.
Abstract:
A track width regulating section having a track width, which is smaller than the resolution obtained by the wavelength of the light used for exposure and development of a resist, is formed between a lower core layer and an upper core layer. Since the width of the upper core layer is larger than the track width, magnetic saturation can be effectively reduced. Inclined faces are formed on the upper surface of the lower core layer so as to be inclined in directions away from the track width regulating section, thereby adequately preventing write fringing.