Abstract:
A mold stack for a mold comprises a mold core configured for reception in a mold cavity plate with an outer molding surface. The mold core comprises an inner core with a first tapered guide surface and an outer core with a second tapered guide surface. The inner core is received through a passage in the outer core. A spacer slidably supports the outer core on the inner core. The outer core is movable relative to the inner core between a molding position in which the inner and outer cores define a mold cavity with the outer molding surface, and an open position in which the outer core is extended relative to the inner core. In the molding position, the first and second tapered guide surfaces engage one another to align the inner and outer cores.
Abstract:
Disclosed herein, amongst other things, are various conversion structures for use in a molding system (100, 200). A non-limiting embodiment of the conversion structure includes a standard mold receiver (140, 157) and a mold conversion module (151A, 151B, 151C, 251A, 251B, 251C, 251D, 251E, 251F, 152A, 152B, 152C, 170A, 170B, 170C). The standard mold receiver (140, 57) and the mold conversion module (151A, 151B, 151C, 251A, 251B, 251C, 251D, 251E, 251F, 152A, 152B, 152C, 170A, 170B, 170C) are configured to cooperate, wherein the mold conversion module (151A, 151B, 151C, 251A, 251B, 251C, 251D, 251E, 251F, 152A, 152B, 52C, 170A, 170B, 170C) is receivable in the standard mold receiver (140, 157) for converting a molding configuration of a mold (120).
Abstract:
An injection mold for molding a flip-top closure having a body portion and a lid attached to the body portion by a living hinge has first and second mold portions for defining first and second portions of the flip-top closure respectively, a lid closing tool for closing the lid of the flip-top closure on the body portion after a molding of the flip-top closure in the injection mold and before an ejection of the flip-top closure from the injection mold, and first and second linear actuators operatively connected to the lid closing tool for moving the lid closing tool about first and second axes respectively. The first and second linear actuators are controllable to move the lid closing tool along a lid closing path for closing the lid. An in-mold lid closing device and a method for making a flip-top closure are also disclosed.
Abstract:
Disclosed herein, amongst other things, is a method for converting a design of an original preform that is blow moldable to form a container into a converted preform having less molding material that is blow moldable to form the same container. The method includes retaining a neck finish and body of the original preform on the converted preform. The method further includes replacing the original base of the original preform with a converted base having an outer base surface that joins with an outer body surface of the body at an base split-line of the original base and that fits offset within an outer body surface of the original base, whereby the converted preform has a reduced total length, disregarding any gate vestige that may be formed thereon, relative to a total length of the original preform.
Abstract:
A method is provided of cleaning of a portion of a mold component, the portion of the mold component including a passage configured, in use, to allow passage of fluid and to prevent passage of melt, the method comprising: entering the mold component into a cleaning configuration, whereby a portion of the passage becomes part of a molding surface; performing a molding cycle to fill in at least the portion of the passage with molding material for incorporation and removal of a residue there from. Also provided is a mold having a first mold half and a second mold half, the halves being movable relative to each other. A mold shut height adjustment apparatus can provide for a change in the mold shut height.
Abstract:
An injection molding machine comprises a manifold plate, a nozzle extending through the manifold plate, and a gate pad. A valve stem is disposed within the nozzle and is movable between a first position in which the valve stem extends through an outlet of the nozzle, and a retracted position. The gate pad has an inlet end with an inlet opening and an outlet end with a gate aperture. The inlet end is removably attachable to the manifold plate so that the nozzle is received through the inlet opening and the outlet of the nozzle is in communication with the gate aperture, wherein the valve stem seals the gate aperture in the extended position. The outlet end of the gate pad abuts a mold insert and molding material is delivered from the nozzle to a cavity defined by the mold insert through the gate aperture.
Abstract:
Described herein, amongst other things, is a container preform that is blow moldable into a container. The container preform includes a tubular body having a neck finish and a base at an open end and a closed end thereof respectively. The base is defined between inside and outside curved surfaces at least one of which is composed of multiple tangential curves, wherein an elongate portion is defined between adjacent inside and outside concentric curves that define a thinnest bottom wall thickness of the base having a constant minimum thickness that is smaller than or equal to a wall thickness of the body.
Abstract:
A mold-tool system (100), comprising: a body assembly (102); and a stem-guidance assembly (106) configured to maintain guiding movement of a valve-stem assembly (934) through the body assembly (102).
Abstract:
A dynamic mixer and associated injection molding system for mixing a melt flow. The injection molding system includes: a hot runner assembly having a plurality of splits; an injection unit that delivers a melt flow to the plurality of splits in the hot runner assembly via a melt channel; and a dynamic mixer incorporated into the melt channel upstream from the plurality of splits, wherein the dynamic mixer includes a rotor assembly configured to be rotationally driven by the melt flow, and wherein the rotor assembly is further configured to mix the melt flow passing through the melt channel.
Abstract:
An in-mold shutter (140) for embedding in an injection mold (100, 200, 300) is described herein. The in-mold shutter (140, 240, 340, 440, 540) includes a shutter actuator (148, 548) that is configured to selectively engage a first mold shoe (130) of the injection mold (100, 200, 300) with a platen of a mold clamping assembly (996) to hold the first mold shoe (130) in an extended position (E), along a mold-stroke axis (X), during a step of molding a first molded article (102A) in the injection mold (100, 200, 300). Also described herein is a molded article transfer device (150, 250) for use with the injection mold (100, 200, 300). The molded article transfer device (150, 250) includes a shuttle (154) that is slidably arranged, in use, within the injection mold (100, 200, 300). The shuttle (154) defines a first aperture (156A), at least in part, that alternately accommodates: (i) a first mold stack (106A, 206A, 306A) arranged therein; and (ii) a first molded article (102A) received therein with opening of the first mold stack (106A, 206A, 306A).