Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for approximating responses to a user speech query in voice-enabled search based on metadata that include demographic features of the speaker. A system practicing the method recognizes received speech from a speaker to generate recognized speech, identifies metadata about the speaker from the received speech, and feeds the recognized speech and the metadata to a question-answering engine. Identifying the metadata about the speaker is based on voice characteristics of the received speech. The demographic features can include age, gender, socio-economic group, nationality, and/or region. The metadata identified about the speaker from the received speech can be combined with or override self-reported speaker demographic information.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for recognizing speech. The method includes receiving speech from a user, perceiving at least one speech dialect in the received speech, selecting at least one grammar from a plurality of optimized dialect grammars based on at least one score associated with the perceived speech dialect and the perceived at least one speech dialect, and recognizing the received speech with the selected at least one grammar. Selecting at least one grammar can be further based on a user profile. Multiple grammars can be blended. Predefined parameters can include pronunciation differences, vocabulary, and sentence structure. Optimized dialect grammars can be domain specific. The method can further include recognizing initial received speech with a generic grammar until an optimized dialect grammar is selected. Selecting at least one grammar from a plurality of optimized dialect grammars can be based on a certainty threshold.
Abstract:
State-of-the-art speech recognition systems are trained using transcribed utterances, preparation of which is labor-intensive and time-consuming. The present invention is an iterative method for reducing the transcription effort for training in automatic speech recognition (ASR). Active learning aims at reducing the number of training examples to be labeled by automatically processing the unlabeled examples and then selecting the most informative ones with respect to a given cost function for a human to label. The method comprises automatically estimating a confidence score for each word of the utterance and exploiting the lattice output of a speech recognizer, which was trained on a small set of transcribed data. An utterance confidence score is computed based on these word confidence scores; then the utterances are selectively sampled to be transcribed using the utterance confidence scores.
Abstract:
A speech recognition system includes, or has access to, conventional speech recognizer data, including a conventional acoustic model and pronunciation dictionary. The speech recognition system generates restructured speech recognizer data from the conventional speech recognizer data. When used at runtime by a speech recognizer module, the restructured speech recognizer data produces more accurate and efficient results than those produced using the conventional speech recognizer data. The restructuring involves segmenting entries of the conventional pronunciation dictionary and acoustic model according to their constituent phonemes and grouping those entries with the same initial N phonemes, for some integer N (e.g., N=3), and deriving a restructured dictionary with a corresponding semi-word acoustic model for the various grouped entries. The decomposition of the conventional pronunciation dictionary into the restructured dictionary with semi-word acoustic model greatly reduces the number of possibilities in the dictionaries (e.g., from potentially unlimited to finite and relatively small), and also improves the accuracy of speech recognition.
Abstract:
A masking system prevents a human agent from receiving sensitive personal information (SPI) provided by a caller during caller-agent communication. The masking system includes components for detecting the SPI, including automated speech recognition and natural language processing systems. When the caller communicates with the agent, e.g., via a phone call, the masking system processes the incoming caller audio. When the masking system detects SPI in the caller audio stream or when the masking system determines a high likelihood that incoming caller audio will include SPI, the caller audio is masked such that it cannot be heard by the agent. The masking system collects the SPI from the caller audio and sends it to the organization associated with the agent for processing the caller's request or transaction without giving the agent access to caller SPI.
Abstract:
Machine translation is used to leverage the semantic properties (e.g., intent) already known for one natural language for use in another natural language. In a first embodiment, the corpus of a first language is translated to each other language of interest using machine translation, and the corresponding semantic properties are transferred to the translated corpuses. Semantic models can then be generated from the translated corpuses and the transferred semantic properties. In a second embodiment, given a first language for which there is a semantic model, if a query is received in a second, different language lacking its own semantic model, machine translation is used to translate the query into the first language. Then, the semantic model for the first language is applied to the translated query, thereby obtaining the semantic properties for the query, even though no semantic model existed for the language in which the query was specified.
Abstract:
An interactive response system directs input to a software-based router, which is able to intelligently respond to the input by drawing on a combination of human agents, advanced recognition and expert systems. The system utilizes human “intent analysts” for purposes of interpreting customer input. Automated recognition subsystems are trained by coupling customer input with IA-selected intent corresponding to the input, using model-updating subsystems to develop the training information for the automated recognition subsystems.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically selects one or more recognizers from a language model and a human agent to recognize user input. Selection of the one or more recognizers is based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
A natural language processing system has a hierarchy of user intents related to a domain of interest, the hierarchy having specific intents corresponding to leaf nodes of the hierarchy, and more general intents corresponding to ancestor nodes of the leaf nodes. The system also has a trained understanding model that can classify natural language utterances according to user intent. When the understanding model cannot determine with sufficient confidence that a natural language utterance corresponds to one of the specific intents, the natural language processing system traverses the hierarchy of intents to find a more general user intent that is related to the most applicable specific intent of the utterance and for which there is sufficient confidence. The general intent can then be used to prompt the user with questions applicable to the general intent to obtain the missing information needed for a specific intent.
Abstract:
A request from a party is received by a receiver from a remote system. The request from the party is received when the party attempts to obtain a service using the remote system. A selective determination is made to request, over a network, authentication of the party by a remote biometric system. A request is sent to the remote system for the party to provide a biometric sample responsive to determining to request authentication of the party. The service is provided contingent upon authentication of the party by the remote biometric system.