Abstract:
A virtual assistant system for communicating with customers uses human intelligence to correct any errors in the system AI, while collecting data for machine learning and future improvements for more automation. The system may use a modular design, with separate components for carrying out different system functions and sub-functions, and with frameworks for selecting the component best able to respond to a given customer conversation.
Abstract:
An interactive response system directs input to a software-based router, which is able to intelligently respond to the input by drawing on a combination of human agents, advanced recognition and expert systems. The system utilizes human “intent analysts” for purposes of interpreting customer input. Automated recognition subsystems are trained by coupling customer input with IA-selected intent corresponding to the input, using model-updating subsystems to develop the training information for the automated recognition subsystems.
Abstract:
An interactive response system combines human intelligence (HI) subsystems with artificial intelligence (AI) subsystems to facilitate overall capability of multi-channel user interfaces. The system permits imperfect AI subsystems to nonetheless lessen the burden on HI subsystems. A combined AI and HI proxy is used to implement an interactive omnichannel system, and the proxy dynamically determines how many AI and HI subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the AI recognition and availability of HI resources. Furthermore the system uses information from prior recognitions to automatically build, test, predict confidence, and maintain AI models and HI models for system recognition improvements.
Abstract:
An interactive response system directs input to a software-based router, which is able to intelligently respond to the input by drawing on a combination of human agents, advanced recognition and expert systems. The system utilizes human “intent analysts” for purposes of interpreting customer input. Automated recognition subsystems are trained by coupling customer input with IA-selected intent corresponding to the input, using model-updating subsystems to develop the training information for the automated recognition subsystems.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically selects one or more recognizers from a language model and a human agent to recognize user input. Selection of the one or more recognizers is based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
A virtual assistant system for communicating with customers uses human intelligence to correct any errors in the system AI, while collecting data for machine learning and future improvements for more automation. The system may use a modular design, with separate components for carrying out different system functions and sub-functions, and with frameworks for selecting the component best able to respond to a given customer conversation.
Abstract:
An interactive response system directs input to a software-based router, which is able to intelligently respond to the input by drawing on a combination of human agents, advanced recognition and expert systems. The system utilizes human “intent analysts” for purposes of interpreting customer input. Automated recognition subsystems are trained by coupling customer input with IA-selected intent corresponding to the input, using model-updating subsystems to develop the training information for the automated recognition subsystems.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs. In some embodiments, the ASR proxy dynamically selects one or more recognizers based at least in part on the identified grammar and the time length of the utterance.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.