Abstract:
In response to a network topology change, a clock root node calculates a new clock path for each affected node by building a clock source topology tree, and identifying from that tree a path to the network node from a clock source of higher or equal stratum relative to that network node. The root node then sends a network message to each node indicating the new path that the node should use. Each node receives the message and compares the new path with the existing path. If the paths are different then the node acquires the new path just received in the message. If the paths are the same then the node does nothing and discards the message.
Abstract:
A timestamp-based all digital phase locked loop is utilized for clock synchronization for Circuit Emulation Service (“CES”) over packet networks. The all digital phase locked loop at a CES receiver includes a phase detector, a loop filter, a digital oscillator and a timestamp counter. The all digital phase locked loop enables the CES receiver to synchronize a local clock at the receiver with a clock at a CES transmitter, where indications of transmitter clock signals are communicated to the receiver as timestamps. The phase detector is operable to compute an error signal indicative of differences between the timestamps and a local clock signal. The loop filter is operable to reduce jitter and noise in the error signal, and thereby produce a control signal. The digital oscillator is operable to oscillate at a frequency based at least in-part on the control signal, and thereby produce a digital oscillator output signal. The timestamp counter operable to count pulses in the digital oscillator output signal, and output the local clock signal.
Abstract:
A rotator switch including more tandem buffers than inputs is disclosed. An input data conditioner formats data to be transferred from the multiple inputs to the tandem buffers. Excess tandem buffers allow data to be transferred from inputs to tandem buffers at a rate less than the rate at which data arrives at the inputs. Excess capacity of the switch fabric may be used to carry overhead, or slow the rate at which data is transferred to the switch fabric.
Abstract:
Disclosed is an Active Queue Management method and apparatus which uses traffic rate information for congestion control. Using a nonlinear fluid-flow model of Traffic Control Protocol, a proportional-integral controller in a closed loop configuration with gain settings characterized for stable operation allows a matching of the aggregate rate of the active TCP connections to the available capacity. Further disclosed is a method for calculation of the regime of gain settings for which stable operation of a given network obtains. This approach allows for capacity matching while maintaining minimal queue size and high link utilization.
Abstract:
A method for dynamically adjusting jitter buffer size according to buffer fill dynamics is disclosed. In one embodiment, an upper threshold and lower threshold for the jitter buffer are identified, wherein the lower buffer threshold identifies a minimum desirable number of packets in the jitter buffer, and the upper buffer threshold identifies a maximum desirable number of packets in the jitter buffer. Operating characteristics of the jitter buffer are monitored to identify instances when the jitter buffer size falls below or exceeds the desired thresholds. When a threshold is crossed, the adaptive algorithm alters the playback offset time, by introducing or deleting packets into the transmission path, to allow the jitter buffer size to return to a desirable target size within the threshold boundaries.
Abstract:
Disclosed is a rate-based multi-level Active Queue Management with drop precedence differentiation method and apparatus which uses traffic rate information for congestion control. Using a nonlinear fluid-flow model of Traffic Control Protocol, an integral controller in a closed-loop configuration with gain settings characterized for stable operation allows a matching of the aggregate rate of the active TCP connections to the available capacity. Further disclosed is a method for calculation of the regime of gains over which stable operation of a given network obtains. An enhancement of the basic algorithm provides the ability to drop low-precedence packets in preference to higher precedence packets. This approach allows for a rate-based AQM approach for application in a differentiated service environment.
Abstract:
Disclosed is a queue based multi-level Active Queue Management with drop precedence differentiation method and apparatus which uses queue size information for congestion control. The method provides for a lower complexity in parameter configuration and greater ease of configuration over a wide range of network conditions. A key advantage is a greater ability to maintain stabilized network queues, thereby minimizing the occurrences of queue overflows and underflows, and providing high system utilization.
Abstract:
A technique for synchronizing clocks in a network is disclosed. In one exemplary embodiment, the technique may be realized as a method for synchronizing clocks in a network. The method comprises receiving a first timestamp and a second timestamp, each indicating a respective time instance as determined by a first clock signal within the network. The method also comprises measuring a first time interval between the first timestamp and the second timestamp. The method further comprises generating a difference signal representing a difference between the first time interval and a second time interval, and generating a second clock signal based upon the difference signal such that the second clock signal is synchronized with the first clock signal.
Abstract:
A method of encoding a plurality of pre-defined codes into a search key and a method of using the search key to locate a longest matching pre-defined code to a given code is disclosed. Encoding the pre-defined codes into a search key involves producing a prefix node bit array (PNBA) having a plurality of bit positions corresponding to possible bit combinations of a bit string having a length equal to or less than the longest predefined code in said plurality of said pre-defined codes such that said bit positions are arranged by the lengths of said possible bit combinations and by numeric value of said possible bit combinations and to setting bits active in bit positions which correspond to bit combinations identified by said pre-defined codes. The method of locating involves producing a search mask encoding at least one portion of said given code and comparing said search mask to a search key having a Prefix Node Bit Array (PNBA) in which a bit is set active in at least one of a plurality of bit positions corresponding to possible bit combinations of bits in a bit string having a length equal to or less than the longest predefined code in said plurality of said pre-defined codes and arranged by the lengths of said possible bit combinations and by numeric values of said bit combinations, to identify a common active bit position in said search key and said search mask corresponding to a one of said pre-defined codes having a length greater than all others of said pre-defined codes which correspond to common active bit positions.
Abstract:
An apparatus, method, computer-readable medium and signals for connection-class parameter control of packet flow, involves indicating a desired packet flow from a packet source to a network element having a queue, by communicating to the packet source an indication of a desired number of packets to be received from the source in a time period, in response to a class parameter associated with a class of connections supported by the network element and queue conditions at the network element.