Abstract:
A connector assembly that includes a base frame extending along a longitudinal axis between a pair of frame ends. The connector assembly also includes a moveable side that is supported by the base frame and extends in a direction along the longitudinal axis. The moveable side includes a mating array of terminals. The connector assembly also includes a flex connection that is communicatively coupled to the mating array. The flex connection and the mating array are configured to transmit data signals. The connector assembly also includes a coupling mechanism that is supported by the base frame and is operatively coupled to the moveable side. The coupling mechanism is configured to be actuated to move the moveable side between retracted and engaged positions along a mating direction.
Abstract:
An electrical contact includes a body extending along a longitudinal axis. The body includes a mating contact portion for electrical connection with an electronic module, an intermediate portion extending from the mating contact portion, and a mounting contact portion extending from the intermediate portion for electrical connection with a circuit board. The mounting contact portion extends from the intermediate portion at a bend. The mounting contact portion extends from the bend to an end portion. The body also includes a push surface formed when a carrier strip that initially connects the electrical contact to other electrical contacts is separated from the electrical contact. The push surface is offset from the bend along the longitudinal axis in a direction away from the mating contact portion.
Abstract:
A connector system includes an upper electrical connector having a housing that defines an open bottomed cavity defining a cavity envelope and that defines a mating interface for a mating connector. The upper electrical connector further has contacts mounted to the housing and extending along the mating interface. The connector system includes a first lower electrical connector mountable to a circuit board that has a first outer envelope adapted for fitting in the cavity envelope, and a second lower electrical connector mountable to a circuit board that has a second outer envelope adapted for fitting in the cavity envelope. The upper electrical connector is separately mountable to the circuit board over each of the first lower electrical connector and the second lower electrical connector. Optionally, the upper electrical connector may be mountable over only one of the first lower electrical connector and the second lower electrical connector at a time
Abstract:
A receptacle assembly for an electrical connector is provided. The assembly includes a housing, a plurality of electrical contacts and a shield. The housing includes a mating end and a mounting end that are orthogonal to each other. The mating end of the housing is elongated along a longitudinal axis of the housing. The electrical contacts are held by the housing and extend between a mating end presented at the mating end of the housing and a mounting end configured to be mounted to a circuit board. The shield has a mating interface elongated along a longitudinal axis. The shield is configured to receive the electrical connector. The housing and the contacts are located within the shield. The longitudinal axes of the housing and the mating interface are orthogonal to the circuit board.
Abstract:
A socket connector includes an insulative carrier having opposite first and second sides and a plurality of vias extending between the first and second sides. A plurality of polymer columns is held by the carrier. Each polymer column includes a first end extending from the first side of the carrier and a second end extending from the second side of the carrier. A contact array is disposed on each first and second side of the carrier. Each contact array comprises a flexible sheet having a plurality of conductive elements having contact tips proximate corresponding first and second ends of the polymer columns. The conductive elements on the first side of the carrier are electrically connected to corresponding conductive elements on the second side of the carrier through the vias in the carrier to establish electrical paths between corresponding contact tips on the first and second sides of the carrier.
Abstract:
A receptacle connector is provided for mounting on a printed circuit having opposite sides and an edge surface intersecting the sides. The connector includes a shell having a mount configured to be mounted on at least one of the sides of the printed circuit. The shell includes a receptacle for receiving a mating connector therein. A housing extends at least partially within the receptacle of the shell. An electrical contact is held by the housing. The electrical contact includes a mounting segment configured to be mounted on the printed circuit. The electrical contact includes a transition segment that extends outwardly from the mounting segment and projects beyond the edge surface of the printed circuit when the electrical contact is mounted on the printed circuit. The electrical contact includes a mating segment that extends outwardly from the transition segment and within the receptacle of the shell. The mating segment includes a mating surface that extends a length that is aligned with a plane that intersects the edge surface of the printed circuit when the electrical contact is mounted on the printed circuit.
Abstract:
A connector assembly having a connector body that includes a support structure and a mating side and has an adjustable cavity therebetween. The mating side has a mating array of terminals thereon that is configured to face a communication component. The mating side is moveable relative to the support structure. The connector assembly also includes an elastic container having a reservoir that holds a working fluid. The elastic container is positioned within the adjustable cavity between the support structure and the mating side. The elastic container changes between first and second shapes to move the mating side toward and away from the communication component.
Abstract:
A connector assembly that includes a base frame extending along a longitudinal axis between a pair of frame ends. The connector assembly also includes a moveable side that is supported by the base frame and extends in a direction along the longitudinal axis. The moveable side includes a mating array of terminals. The connector assembly also includes a flex connection that is communicatively coupled to the mating array. The flex connection and the mating array are configured to transmit data signals. The connector assembly also includes a coupling mechanism that is supported by the base frame and is operatively coupled to the moveable side. The coupling mechanism is configured to be actuated to move the moveable side between retracted and engaged positions along a mating direction.
Abstract:
An electrical connector assembly includes a connector having a connector housing and contacts held by the connector housing, where the contacts defining a separable mating interface for mating with a mating component. An actuator engages the contacts and is movable between an actuated position and an unactuated position. The contacts are deflected relative to the connector housing when the actuator is moved to the actuated position. An actuation device is configured to move the actuator between the actuated position and the unactuated position.
Abstract:
An electrical connector assembly couples a circuit board with at least one of a motherboard and a backplane board. The connector assembly includes a connector and a flexible circuit member. The connector has a mating interface and a mounting interface. The mating interface electrically couples the connector with the circuit board. The mounting interface secures the connector to the motherboard. The flexible circuit member electrically interconnects the mating and mounting interfaces with one another and with at least one of the motherboard and the backplane board. The flexible circuit member electrically interconnects the circuit board with the backplane board via a conductive pathway that bypasses the motherboard.