Abstract:
The present invention provides an electrophotosensitive material containing the diamine derivative represented by the following general formula (I) and at least one selected from the group consisting of the hydrazone compound, fluorene compound and m-phenylenediamine compound. ##STR1## wherein R.sup.5 to R.sup.9, l, m, n, o and p are as defined.
Abstract:
The present invention provides an image display device capable of displaying a good image by suppressing yellowing of a glass substrate, and a high-yield manufacturing method of the glass substrate. The image display device is formed of a front-side glass substrate and a back-side glass substrate. In this manufacturing method, a glass substrate is used as the front-side glass substrate when Sn++ content in the glass substrate is a predetermined value or less, and the glass substrate is used as the back-side glass substrate when the Sn++ content exceeds the predetermined value.
Abstract:
Provided are an image display device capable of displaying a good image by suppressing yellowing of a glass substrate, and an evaluating method of the glass substrate. The image display device is formed using the glass substrate where reflectance at wavelength of 220 nm is 5% or lower. In the evaluating method of the glass substrate for the image display device, Sn++ content in the glass substrate is analyzed using reflectance at wavelength of 220 nm.
Abstract:
The present invention provides an image display device capable of displaying a good image by suppressing yellowing of a glass substrate, and a high-yield manufacturing method of the glass substrate. The image display device is formed of a front-side glass substrate and a back-side glass substrate. In this manufacturing method, a glass substrate is used as the front-side glass substrate when Sn++ content in the glass substrate is a predetermined value or less, and the glass substrate is used as the back-side glass substrate when the Sn++ content exceeds the predetermined value.
Abstract:
Disclosed here is a plasma display panel having stable addressing characteristics and a method of manufacturing a plasma display panel having such a reliable structure. According to the plasma display panel and the manufacturing method, on back plate (2) that confronts front plate (1) having scan electrodes (6) and sustain electrodes (7) thereon, data electrodes (10), first dielectric layer (17) disposed to cover the data electrodes, priming electrodes (15), and second dielectric layer (18) disposed to cover the priming electrodes are formed in the order named; at the same time, the softening temperatures of the materials forming the components disposed on the back plate are determined so as to become lower in the order named. The temperature setting protects first dielectric layer (17) from deterioration or deformation, improving dielectric voltage between data electrodes (10) and priming electrodes (15).
Abstract:
The present invention provides an image display device capable of displaying a good image by suppressing yellowing of a glass substrate, and an evaluating method of the glass substrate. The image display device is formed using the glass substrate where reflectance at wavelength of 220 nm is 5% or lower. In the evaluating method of the glass substrate for the image display device, Sn++ content in the glass substrate is analyzed using reflectance at wavelength of 220 nm.
Abstract:
Disclosed here is a plasma display panel having stable addressing characteristics and a method of manufacturing a plasma display panel having such a reliable structure. According to the plasma display panel and the manufacturing method, on back plate (2) that confronts front plate (1) having scan electrodes (6) and sustain electrodes (7) thereon, data electrodes (10), first dielectric layer (17) disposed to cover the data electrodes, priming electrodes (15), and second dielectric layer (18) disposed to cover the priming electrodes are formed in the order named; at the same time, the softening temperatures of the materials forming the components disposed on the back plate are determined so as to become lower in the order named. The temperature setting protects first dielectric layer (17) from deterioration or deformation, improving dielectric voltage between data electrodes (10) and priming electrodes (15).
Abstract:
An electrode plate, a method of manufacturing the same, a gas discharge panel using an electrode plate, and a method of manufacturing the same are provided by incorporating a relatively simple structure, which can keep electrodes formed on a plate from peeling or becoming misaligned. In the electrode plate, at least one electrode is formed and adhered to a main surface of a plate by a thick film or thin film formation method, wherein of all ends of the electrode, at least an end opposite to an end at a power supply point is adhered to the main surface of the plate with stronger adhesion than the other parts of the electrode. When this electrode plate is used as a front panel glass having a plurality of pairs of display electrodes in a gas discharge panel, at least an end of each bus line opposite to an end at a power supply point is firmly adhered to the surface of the front panel glass, thereby keeping the bus lines formed on respective transparent electrodes from warping and peeling away or becoming misaligned. Such a gas discharge panel can deliver excellent display performance.
Abstract:
A method of manufacturing at least two layer electrodes that can be utilized, for example, as bus and data electrodes in a plasma display device, includes depositing each layer in a coating step and subsequently exposing the layers at the same time for development. The layers are subsequently baked at the same time. One layer can be thinner than the other layer during a time period between the developing step and the baking step.
Abstract:
An object of the present invention is to provide a method for manufacturing electrodes that can effectively suppress edge-curl when metal electrodes such as bus electrodes and data electrodes are patterned mainly by a photolithography method. In order to achieve the above object, in the manufacturing method in the present invention, an amount of undercut generated by difference in a degree of dissolution caused by developing solution is controlled, and baking is performed at a temperature such that glass in a protrusion formed at side edges becomes soft so as to touch a substrate by gravity. With such method for manufacturing, it becomes possible to make the side edges rounded whose curvature changes continuously.