摘要:
The conductive magnetic fluid which attains high response speed and large torque and exhibits sealing performance is obtained by dispersing, in a solvent such as silicone oil, ferromagnetic particles such as Ni—Fe alloy, iron, and magnetite, and carbon fiber having a mean fiber diameter of 10 to 500 nm and a mean aspect ratio of 30 to 200. The sealing device and the actuator are produced by use of the conductive magnetic fluid.
摘要:
Disclosed are (1) a thermopolymerizable composition containing a thermopolymerizable compound containing a (meth)acrylate having a moiety including oxyalkylene, fluorocarbon, oxyfluorocarbon and/or carbonate in the molecule, at least one electrolyte, and a polymerization initiator which is an organic peroxide containing no benzene ring, (2) a solid electrolyte obtained by thermally curing the composition, and (3) a primary battery, a secondary battery and electric double layer capacitor including the solid electrolyte, as well as a production method thereof. The polymer solid electrolyte obtained from the thermopolymerizable composition has high ion conductivity and good stability and the primary battery and secondary battery produced using the polymer solid electrolyte are operable at high capacity and high current, has a long-term service life and high reliability, and can be produced at low costs. Further the electric double layer capacitor is high in output voltage, and outputs a large amount of current, has high working ability, has a long-term service life and high reliability, and can be produced at low costs.
摘要:
The invention relates to a composite electrode material consisting of a carbon coated complex oxide, fibrous carbon and a binder. Said material is prepared by a method which comprises co-grinding an active electrode material and fibrous carbon, and adding a binder to the co-grinded mixture to lower the viscosity of the mixture. The fibrous carbon is preferably vapor grown carbon fibers.
摘要:
The present invention provides composite graphite particles, which are useful for a negative electrode in a secondary battery having high capacitance, good charge-discharge characteristics and good charge-discharge cycle characteristics; and a paste for negative electrode, a negative electrode and a lithium secondary battery which use the composite graphite particles.The composite graphite particles of the present invention comprises a core material consisting of graphite having a interlayer distance d(002) of 0.337 nm or less in which the intensity ratio ID/IG (R value) between the peak intensity (ID) in a range of 1300 to 1400 cm−1 and the peak intensity (IG) in a range of 1580 to 1620 cm−1 as measured by Raman spectroscopy spectra is from 0.01 to 0.1 and a carbonaceous surface layer in which the intensity ratio ID/IG(R value) between the peak intensity (ID) in a range of 1300 to 1400 cm−1 and the peak intensity (IG) in a range of 1580 to 1620 cm−1 as measured by Raman scattering spectroscopy is 0.2 or higher; wherein the peak intensity ratio I110/I004 between the peak intensity (I110) of face (110) and the peak intensity (I004) of face (004) obtained by XRD measurement on the graphite crystal is 0.2 or higher when the particles are mixed with a binder and pressure-molded to a density of 1.55 to 1.65 g/cm3.
摘要:
The invention relates to a composite material comprising carbon fibers and complex oxide particles, wherein the carbon fibers and the complex oxide particles have a carbon coating on at least part of their surface, said carbon coating being a non powdery coating The material is prepared by a method comprising mixing a complex oxide or precursors thereof, an organic carbon precursor and carbon fibers, and subjecting the mixture to a heat treatment in an inert or reducing atmosphere for the decomposition of the precursors The material is useful as the cathode material in a battery
摘要:
The present invention relates to a negative electrode material for a lithium battery characterized by comprising a carbonaceous negative electrode active substance having a specific surface area of 1 m2/g or more, a binder formed of styrene-butadiene rubber and a carbon fiber having a fiber diameter of 1 to 1,000 nm; and to a lithium battery using the negative electrode material, which has excellent characteristics, i.e., low electrode resistance, high electrode strength, excellent electrolytic solution permeability, high energy density, and good high-speed charging/discharging performance. The negative electrode material contains carbon fiber in the amount of 0.05 to 20 mass % and the binder formed of styrene-butadiene rubber in 0.1 to 6.0 mass %, and may further contain a thickner such as carboxymethyl cellulose in the amount of 0.3 to 3 mass %.
摘要:
The present invention relates to a lithium battery positive electrode comprising an active substance that can occlude and release lithium ion, a carbon-based conductivity enhancer, and a binder, characterized in that the positive electrode contains the carbon-based conductivity enhancer in an amount of 0.1 to 2 mass % on the basis of the entire mass of the positive electrode, and that the carbon-based conductivity enhancer contains a carbon fiber having a mean fiber diameter of 1 to 200 nm, wherein the active substance that can occlude and release lithium ion is contained in an amount, as calculated from the true density of the active substance, of 70% by volume or more on the basis of the total volume of the positive electrode; and relates to a lithium battery using the a lithium battery positive electrode. The positive electrode obtained by the present invention has an excellent electrolyte permeability and electrolyte retention. Therefore, it is better adapted to high-density lithium battery.
摘要:
The invention relates to a high-density electrode, obtained by impregnating a high-density electrode which comprises an electrode active substance and carbon fiber having a fiber filament diameter of 1 to 1,000 nm and has a porosity of 25% or less, with a solid polymer electrolyte; and to a battery including the resultant (high-density) electrode. According to the invention, electrolytic solution permeability and electrolytic solution retainability, which are matters of importance in realizing a high-density electrode for achieving a battery having a high energy density, can be improved.
摘要:
The present invention provides a solid polymer electrolyte; a polymerizable composition having low viscosity and excellent processability for obtaining the solid polymer electrolyte; and a polymerizable compound having low viscosity, and good polymerizability and stability for use in the polymerizable composition. The present invention also provides primary and secondary batteries capable of working with high capacity and current; an electric double-layer capacitor ensuring high output voltage, large takeout current, and good processability; and an electrochromic device favored with high response speed. Each thereof use the solid polymer electrolyte of the present invention and are ensured with long life, excellent safety free of liquid leakage, high reliability and production at a low cost. A solid polymer electrolyte, including a carbonate-based polymer in which a branched chain is introduced and having a high dielectric constant and a wide electrochemical stability range, having excellent processability, good safety and high ionic conductivity, is provided.
摘要:
The present invention provides a solid polymer electrolyte; a polymerizable composition having low viscosity and excellent processability for obtaining the solid polymer electrolyte; and a polymerizable compound having low viscosity, and good polymerizability and stability for use in the polymerizable composition. The present invention also provides primary and secondary batteries capable of working with high capacity and current; an electric double-layer capacitor ensuring high output voltage, large takeout current, and good processability; and an electrochromic device favored with high response speed. Each thereof use the solid polymer electrolyte of the present invention and are ensured with long life, excellent safety free of liquid leakage, high reliability and production at a low cost. A solid polymer electrolyte, including a carbonate-based polymer in which a branched chain is introduced and having a high dielectric constant and a wide electrochemical stability range, having excellent processability, good safety and high ionic conductivity, is provided.