Abstract:
An elevator system uses a supercapacitor to store electric energy. Furthermore, the supercapacitor can be used as a source of reserve power in emergency situations, such as power failures. The supercapacitor is connected together with three switching branches to a rectified signal of the power supply of the motor. By closing and opening the switches, the supercapacitor can be charged when the motor load is small. When the motor load is large or when the power supply fails, the electric energy contained in the supercapacitor can be discharged for use by the motor. In an emergency, the motor drives the elevator at a speed lower than normal, and therefore a supply voltage lower than normal is sufficient. Also, energy obtained from braking of the elevator can be stored in the supercapacitor, which has a storage capacity of considerable magnitude as compared to an ordinary capacitor. By applying the invention, the energy consumption of the elevator can be reduced because the waste energy obtained from the power supply can be stored and utilized when more energy is needed.
Abstract:
A method and a system for controlling an elevator that does not change the torque direction, such as an elevator without counterweight, said elevator having an alternating-current electric motor (M1), such as a permanent magnet motor or an asynchronous motor, and a motor drive section (DRIVE1) for controlling the motor and an elevator control section (ECO1) used to control the operation of the elevator, and wherein control channels are provided between the elevator control section and the motor drive section for the transmission of control signals. To control the motor, only position and torque control signals are passed between the elevator control section and the motor drive.
Abstract:
A method and an apparatus for adjustment of the rotor angle of an elevator motor (M), in which method: the rotor angle of the elevator motor is measured, the rotor angle is adjusted by using the measured rotor angle value as feedback data, and the rotor angle is measured by a pulse emitter (PE) or tachometer connected to the elevator motor. In the method, a disturbance signal (u) is fed into the rotor angle feedback data to produce a change (disturbance) in the rotor angle, the change (disturbance) is compared to the disturbance signal (u), and, on the basis of the comparison, a control signal is generated to adjust the rotor angle.
Abstract:
The invention relates to an electric motor drive for operating an alternating-current motor. The electric motor drive comprises a frequency converter for controlling the motor, which frequency converter comprises a rectifier and an inverter implemented using semiconductor switches arranged in a bridge, and an intermediate circuit placed between the rectifier and the inverter and comprising a capacitor. According to the invention, the electric motor drive additionally comprises two regulating units, the first one of which contains an inductor unit provided at the input of the frequency converter and at the same time at the input of the rectifier, the inductors comprised in the unit being connected to each phase; and an intermediate circuit with a low-value capacitor, of the order of 50 μF, while the second one contains an auxiliary switch, to which the supply of electric power is arranged to occur via a safety relay, the auxiliary switch being so connected to selected semiconductor switches of the inverter bridge that the control signal for a selected semiconductor switch will pass via the auxiliary switch when the latter is in a conducting state; and a current measuring unit for measuring and/or monitoring the supply current to the electric motor.
Abstract:
A DC/DC bridge having a power stage provided with controllable semiconductor switches controls a direct currently load, and comprises two bridge sections, one of which bridge sections conducts direct currently while the other bridge section is controlled via pulse width modulation to regulate the current magnitude. Two of three bridge arms of the DC/DC bridge are connected in parallel and semiconductor switches in the parallel-connected bridge arms are controlled via pulse width modulation to form a pulse width modulation controlled bridge section.
Abstract translation:具有设置有可控制的半导体开关的功率级的DC / DC桥控制直接的当前负载,并且包括两个桥接部分,其中一个桥接部分目前直接导通,而另一个桥接部分通过脉冲宽度调制来控制以调节电流幅度 。 DC / DC电桥的三个桥臂中的两个并联连接,通过脉宽调制来控制并联桥臂中的半导体开关,形成脉宽调制控制桥段。
Abstract:
The invention relates to a method for controlling an alternating-current motor fed from a current-controlled alternating-current source, in which method the effect of harmonic moments generated in the motor is compensated. According to the invention, the torque of the motor is regulated by means of a current reference and that the current reference is corrected to compensate the harmonic moment.
Abstract:
A procedure determines the parameters for an electric drive that controls a synchronous elevator motor having permanent magnets, a computer controlling the operation of the electric drive being provided with a control model describing the elevator and containing settable parameters. To determine electric drive parameters, an elevator car installed in the elevator shaft is allowed to enter a motional condition produced by the balance difference between the elevator masses using two different loads connected to the terminals of the synchronous motor, the rotational speed, electromotive force and synchronous reactance of the synchronous motor are measured while the elevator car is in a constant motional condition, and the stator resistance is measured via a separate measure. A control model describing the elevator is computed and formed from these measurements.