Abstract:
A data conversion system for a vehicle includes an interface gateway device that is configured to be communicatively coupled with a data acquisition module and a client module. The data acquisition module obtains a value of a data parameter related to operation of the vehicle and communicates the value to the interface gateway device in a first message provided in a first format. The interface gateway device is configured to convert the first format of the first message into a different, second format to form a second message and to communicate the second message to the client module. The client module uses the second message to perform a function for the vehicle.
Abstract:
A rail communication system includes: a communication management device capable of being communicatively coupled with a conductive pathway that extends along a track; and an on-board communication device capable of being coupled with a rail vehicle that travels along the track and with the conductive pathway, the communication management device and the on-board communication device configured to communicate a data signal between each other through the conductive pathway, where the data signal includes network data. A method for communicating with rail vehicles includes: coupling a vehicle management device with a conductive pathway that extends alongside a track; and coupling an on-board communication device disposed on a rail vehicle that travels along the track with the conductive pathway; where the communication management device and the on-board communication device communicate a data signal that includes network data through the conductive pathway.
Abstract:
A system comprises a control module that is configured for operable coupling with at least one of a brake system and/or a penalty detection system of a first vehicle. The control module is further configured to operate in a first mode of operation. In the first mode of operation, the control module activates the brake system, responsive to receiving a first control signal from a second vehicle; the first and second vehicles are coupled in a consist. Alternatively or additionally, the control module is configured to operate in a second mode of operation. In the second mode of operation, the control module is configured to generate the first control signal for transmission to the second vehicle and activation of a brake system of the second vehicle, responsive to receiving a second control signal from the penalty detection system.
Abstract:
A method of communicating data signals includes receiving data from one or more data sources disposed on board a rail vehicle and allocating different portions of a data communication bandwidth to data signals that include the data based on categories of the data. The categories represent at least one of the one or more data sources that provided the data or contents of the data. The data communication bandwidth includes a bandwidth that is available on a communication pathway of the rail vehicle. The method also includes transmitting the data signals through the communication pathway using the portions of the bandwidth that are assigned to the data signals.
Abstract:
A system comprises a control module that is configured for operable coupling with at least one of a brake system and/or a penalty detection system of a first vehicle. The control module is further configured to operate in a first mode of operation. In the first mode of operation, the control module activates the brake system, responsive to receiving a first control signal from a second vehicle; the first and second vehicles are coupled in a consist. Alternatively or additionally, the control module is configured to operate in a second mode of operation. In the second mode of operation, the control module is configured to generate the first control signal for transmission to the second vehicle and activation of a brake system of the second vehicle, responsive to receiving a second control signal from the penalty detection system.
Abstract:
A data communication system for a vehicle includes an interface gateway device that is configured to be communicatively coupled with a data acquisition module and a client module. The interface gateway device is further configured to receive a value of a data parameter related to operation of the vehicle from the data acquisition module and to communicate the value to the client module for performing a function for the vehicle. The interface gateway device also is configured to determine when either of the data acquisition module or the client module is communicatively coupled with the interface gateway device and to implement respective communication configurations associated with the data acquisition module or the client module to receive the value of the data parameter from the data acquisition module or communicate the value of the data parameter to the client module.
Abstract:
A passenger vehicle consist includes a plurality of passenger vehicles and an electrical power transmission line interconnecting the plurality of passenger vehicles. A system for communicating data in the vehicle consist includes first unit on a first vehicle in the consist and a second unit on a second vehicle in the consist. The first and second units are electrically coupled to an electrical power transmission line in the consist that interconnections adjacent vehicles. The electrical power transmission line is an existing line used in the vehicle consist for transferring electrical power to the vehicles in the consist. The first and second units are configured to transmit and/or receive at least one of high-bandwidth data or network data over the electrical power transmission line.
Abstract:
A system for communicating data in a train is provided. The system includes at least one respective router transceiver unit positioned in each of at least two rail vehicles of the train. Each router transceiver unit is coupled to a trainline that extends between the rail vehicles. The trainline is an existing cable bus used in the train for transferring propulsion control data between the rail vehicles that controls at least one of tractive effort or braking effort of the rail vehicles. The router transceiver units are configured to communicate network data over the trainline. In one embodiment, the trainline is an Electrically Controlled Pneumatic (ECP) trainline and the propulsion control data is ECP brake data used to control operations of brakes in the train.