摘要:
A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
摘要:
A lateral JFET has a basic structure including an n-type semiconductor layer (3) formed of an n-type impurity region and a p-type semiconductor layer formed of a p-type impurity region on the n-type semiconductor layer (3). Moreover, in the p-type semiconductor layer, there are provided a p+-type gate region layer (7) extending into the n-type semiconductor layer (3) and containing p-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3) and an n+-type drain region layer (9) spaced from the p+-type gate region layer (7) by a predetermined distance and containing n-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3). With this structure, the lateral JFET can be provided that has an ON resistance further decreased while maintaining a high breakdown voltage performance.
摘要:
On an SiC single crystal substrate, an electric field relaxation layer and a p− type buffer layer are formed. The electric field relaxation layer is formed between the p− type buffer layer and the SiC single crystal substrate to contact SiC single crystal substrate. On the p− type buffer layer, an n type semiconductor layer is formed. On the n type semiconductor layer, a p type semiconductor layer is formed. In the p type semiconductor layer, an n+ type source region layer and an n+ type drain region layer are formed separated by a prescribed distance from each other. At a part of the region of p type semiconductor layer between the n+ type source region layer and the n+ type drain region layer, a p+ type gate region layer is formed.
摘要:
On an SiC single crystal substrate, an electric field relaxation layer and a p− type buffer layer are formed. The electric field relaxation layer is formed between the p− type buffer layer and the SiC single crystal substrate to contact SiC single crystal substrate. On the p− type buffer layer, an n type semiconductor layer is formed. On the n type semiconductor layer, a p type semiconductor layer is formed. In the p type semiconductor layer, an n+ type source region layer and an n+ type drain region layer are formed separated by a prescribed distance from each other. At a part of the region of p type semiconductor layer between the n+ type source region layer and the n+ type drain region layer, a p+ type gate region layer is formed.
摘要:
A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
摘要:
A lateral JFET has a basic structure including an n-type semiconductor layer (3) formed of an n-type impurity region and a p-type semiconductor layer formed of a p-type impurity region on the n-type semiconductor layer (3). Moreover, in the p-type semiconductor layer, there are provided a p+-type gate region layer (7) extending into the n-type semiconductor layer (3) and containing p-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3) and an n+-type drain region layer (9) spaced from the p+-type gate region layer (7) by a predetermined distance and containing n-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3). With this structure, the lateral JFET can be provided that has an ON resistance further decreased while maintaining a high breakdown voltage performance.
摘要:
A lateral junction field effect transistor includes a first gate electrode layer (18A) arranged in a third semiconductor layer (13) between source/drain region layers (6, 8), having a lower surface extending on the second semiconductor layer (12), and doped with p-type impurities more heavily than the second semiconductor layer (12), and a second gate electrode layer (18B) arranged in a fifth semiconductor layer (15) between the source/drain region layers (6, 8), having a lower surface extending on a fourth semiconductor layer (14), having substantially the same concentration of p-type impurities as the first gate electrode layer (18A), and having the same potential as the first gate electrode layer (18A). Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.