摘要:
A method of production of an SiC semiconductor device, which can form an ohmic electrode while preventing electrode metal from diffusing in the SiC single crystal substrate, includes a step of forming an ohmic electrode on an SiC substrate, characterized by forming a gettering layer with a defect density higher than the SiC substrate on that substrate to be parallel with the substrate surface, then forming the ohmic electrode the gettering layer outward from the substrate.
摘要:
A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
摘要:
A lateral junction field effect transistor includes a first gate electrode layer arranged in a third semiconductor layer between source/drain region layers, having a lower surface extending on the second semiconductor layer, and doped with p-type impurities more heavily than the second semiconductor layer, and a second gate electrode layer arranged in a fifth semiconductor layer between the source/drain region layers, having a lower surface extending on a fourth semiconductor layer, having substantially the same concentration of p-type impurities as the first gate electrode layer, and having the same potential as the first gate electrode layer. Thereby, the lateral junction field effect transistor has a structure, which can reduce an on-resistance while maintaining good breakdown voltage properties.
摘要:
A method for manufacturing a silicon carbide semiconductor device includes the steps of: forming a trench mask on an upper surface of a semiconductor substrate; forming the trench such that the trench having an aspect ratio equal to or larger than 2 and having a trench slanting angle equal to or larger than 80 degrees is formed; and removing a damage portion in such a manner that the damage portion disposed on an inner surface of the trench formed in the semiconductor substrate in the step of forming the trench is etched and removed in hydrogen atmosphere under decompression pressure at a temperature equal to or higher than 1600° C.
摘要:
A lateral JFET has a basic structure including an n-type semiconductor layer (3) formed of an n-type impurity region and a p-type semiconductor layer formed of a p-type impurity region on the n-type semiconductor layer (3). Moreover, in the p-type semiconductor layer, there are provided a p+-type gate region layer (7) extending into the n-type semiconductor layer (3) and containing p-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3) and an n+-type drain region layer (9) spaced from the p+-type gate region layer (7) by a predetermined distance and containing n-type impurities of an impurity concentration higher than that of the n-type semiconductor layer (3). With this structure, the lateral JFET can be provided that has an ON resistance further decreased while maintaining a high breakdown voltage performance.
摘要:
A SiC wafer comprises a 4H polytype SiC substrate 2 in which the crystal plane orientation is substantially {03-38}, and a buffer layer 4 composed of SiC formed over this SiC substrate 2. The {03-38} plane forms an angle of approximately 35° with respect to the axial direction in which micropipes and so forth extend, so micropipes and so forth are eliminated at the crystal sides, and do not go through to an active layer 6 on the buffer layer 4. Lattice mismatching between the SiC substrate 2 and the active layer 6 is suppressed by the buffer layer 4. Furthermore, anisotropy in the electron mobility is low because a 4H polytype is used. Therefore, it is possible to obtain a SiC wafer and a SiC semiconductor device with which there is little anisotropy in the electron mobility, and strain caused by lattice mismatching can be lessened, as well as a method for manufacturing these.
摘要:
A heating process for producing a high quality diamond or c-BN film on a diamond or c-BN substrate comprising placing a diamond or c-BN substrate in vacuum, elevating the temperature and treating its surface with a chlorine containing gas, a fluorine containing gas, a nitrogen containing plasma or a hydrogen containing plasma. The treatment gas is then removed and feed gases are introduced which are suitable for growing a thin diamond or c-BN film on the surface substrate under chemical vapor deposition conditions.
摘要:
A process for producing a semiconductor device includes: forming an SiC epitaxial layer on an SiC substrate; implanting the epitaxial layer with ions; forming a gettering layer having a higher defect density than a defect density of the SiC substrate; and carrying out a heat treatment on the epitaxial layer. The semiconductor device includes an SiC substrate, an SiC epitaxial layer formed on the SiC substrate, and a gettering layer having a higher defect density than a defect density of the SiC substrate.
摘要:
A disclosed film deposition apparatus includes a process chamber inside which a reduced pressure space is maintained; a gas supplying portion that supplies a film deposition gas to the process chamber; a substrate holding portion that is made of a material including carbon as a primary constituent and holds a substrate in the process chamber; a coil that is arranged outside the process chamber and inductively heats the substrate holding portion; and a thermal insulation member that covers the substrate holding portion and is arranged to be separated from the process chamber, wherein the reduced pressure space is separated into a film deposition gas supplying space to which the film deposition gas is supplied and a thermal insulation space defined between the substrate holding portion and the process chamber, and wherein a cooling medium is supplied to the thermal insulation space.
摘要:
A silicon carbide (SiC) substrate is provided with an off-oriented {0001} surface whose off-axis direction is . A trench is formed on the SiC to have a stripe structure extending toward a direction. An SiC epitaxial layer is formed on an inside surface of the trench.