Abstract:
An apparatus and method for driving a lamp are provided. In one embodiment, an inverter having four switching elements is split into two inverter arms that are deployed at separate terminals of a floating lamp structure to achieve even light output. A controller drives both inverter arms such that power switching lines do not cross the floating lamp structure. In one embodiment, the controller adjusts the brightness of the lamp structure by adjusting the phase difference between outputs of a first inverter arm relative to a second inverter arm. In one embodiment, the controller adjusts the brightness by symmetrically pulse width modulating the outputs of the first inverter arm and the second inverter arm.
Abstract:
A ring balancer comprising a plurality of balancing transformers facilitates current sharing in a multi-lamp backlight system. The balancing transformers have respective primary windings separately coupled in series with designated lamps and have respective secondary windings coupled together in a closed loop. The secondary windings conduct a common current and the respective primary windings conduct proportional currents to balance currents among the lamps. The ring balancer facilitates automatic lamp striking and the lamps can be advantageously driven by a common voltage source.
Abstract:
A ring balancer comprising a plurality of balancing transformers facilitates current sharing in a multi-lamp backlight system. The balancing transformers have respective primary windings separately coupled in series with designated lamps and have respective secondary windings coupled together in a closed loop. The secondary windings conduct a common current and the respective primary windings conduct proportional currents to balance currents among the lamps. The ring balancer facilitates automatic lamp striking and the lamps can be advantageously driven by a common voltage source.
Abstract:
A backlight system drives multiple lamps using balanced groups of serially-connected lamp transformers. A plurality of lamp transformers is divided into multiple transformer groups. Primary windings of the lamp transformers are coupled in series in each transformer group. Lamps are coupled to secondary windings of the lamp transformers. The transformer groups are arranged in a parallel configuration. One or more balancing transformers couple the transformer groups to a common power source. The balancing transformers divide a common current from the common power source into multiple balanced currents for the respective transformer groups.
Abstract:
A backlight system drives multiple lamps using balanced groups of serially-connected lamp transformers. A plurality of lamp transformers is divided into multiple transformer groups. Primary windings of the lamp transformers are coupled in series in each transformer group. Lamps are coupled to secondary windings of the lamp transformers. The transformer groups are arranged in a parallel configuration. One or more balancing transformers couple the transformer groups to a common power source. The balancing transformers divide a common current from the common power source into multiple balanced currents for the respective transformer groups.
Abstract:
An apparatus and method for driving a lamp are provided. In one embodiment, an inverter having four switching elements is split into two inverter arms that are deployed at separate terminals of a floating lamp structure to achieve even light output. A controller drives both inverter arms such that power switching lines do not cross the floating lamp structure. In one embodiment, the controller adjusts the brightness of the lamp structure by adjusting the phase difference between outputs of a first inverter arm relative to a second inverter arm. In one embodiment, the controller adjusts the brightness by symmetrically pulse width modulating the outputs of the first inverter arm and the second inverter arm.
Abstract:
A light emitting diode (LED) based luminaire driving arrangement constituted of: a switched driver; a plurality of LED based luminaries arranged to receive power from the switched driver; at least one electronically controlled switch in series with at least one of the plurality of LED based luminaries and arranged to alternatively pass current through the at least one LED based luminaire when closed and prevent the flow of current through the at least one LED based luminaire when opened; and at least one synchronous driver in communication with the at least one electronically controlled switch, the at least one synchronous driver arranged to close the at least one electronically controlled switch only when the switched driver is actively supplying power.
Abstract:
A lighting arrangement constituted of: a power factor correction circuit; a lighting controller operative at an electrical potential consonant with the electric potential of the output of the power factor correction circuit; a switching network, coupled to the output of the power factor correction circuit and to respective outputs of the lighting controller; a transformer, a primary winding of the transformer coupled to the output of the switching network; and at least one luminaire coupled to at least one secondary winding of the transformer and arranged to be driven by the at least one secondary winding, the lighting controller operative to control the switching network via the respective outputs to switchably pass current from the power factor correction circuit through the primary winding, thereby powering the at least one luminaire.
Abstract:
A cold cathode fluorescent lamp controller constituted of a pulse generator exhibiting a cycle period; a burst dimming control operative to set a burst dimming duty cycle for the pulse generator; a comparator arranged to receive a signal indicative of the value of current through a load driven by the pulse generator and compare the received signal to a reference signal; an error detection circuit operative to shut down the pulse generator responsive to an output of the comparator indicating that the received signal is less than the reference signal for a predetermined number of cycles of the pulse generator; and a disable circuit arranged to prevent, when the set burst dimming duty cycle is less than a predetermined value, the shut down of the pulse generator responsive to the output of the comparator indicating the received signal is less than the reference signal.
Abstract:
A cold cathode fluorescent lamp controller exhibiting a multi-function terminal and operative alternately in a strike mode and a run mode, the controller comprising: a phase locked loop arranged for synchronization of an oscillator, associated with the controller, with an external signal, the phase locked loop comprising a capacitor coupled to the multi-function terminal; and a soft start circuit arranged to limit drive current immediately after reset of the controller responsive to a signal at the multi-function terminal. In one embodiment the controller further comprises an error detection circuit arranged to output an error signal on the multi-function terminal. In one embodiment the controller further comprises a frequency sweeping circuit operative to sweep the frequency of a drive signal during the strike mode of the controller, the frequency of the drive signal being swept by the frequency sweeping circuit responsive to a signal at the multi-function terminal.