Abstract:
A backlight (100) for an image forming device (70) includes spaced-apart front and back optical reflectors (20, 10) defining an optical cavity (18) therebetween, and at least one light source (15) for emitting light into the optical cavity. The front optical reflector (20) is disposed between the image forming device and the back optical reflector (10). For substantially normally incident light and for non-overlapping first (e.g. visible light) and second (e.g. infrared) wavelength ranges, the front optical reflector (20) may transmit (80c) at least 70% of light (80a) for each wavelength in the first wavelength range, and may reflect (90b) at least 70% of light (90a) for each wavelength in the second wavelength range. The back optical reflector (10) may reflect (80b) at least 70% of light for each wavelength in the first wavelength range, and may transmit (90c) at least 70% of light (90b) for each wavelength in the second wavelength range. The light (80a, 90a) emitted by the at least one light source (15) has at least one wavelength in the first wavelength range and at least one wavelength in the second wavelength range.
Abstract:
Backlights are described. In particular, backlights including wide-web turning films and reflective polarizers having quarter-wave retarders are disclosed. Such configurations can provide turning film systems with improved luminance uniformity for large format displays.
Abstract:
Hybrid polarizers are described. More particularly, hybrid polarizers including reflective polarizer portions and hybrid polarizing portions, including embedded absorbing polarizing elements are described. The hybrid polarizers may be used in backlights or display devices.