Abstract:
A capacitor that comprises a capacitor element that includes an anode that contains a dielectric formed on a sintered porous body, a solid electrolyte overlying the anode that contains manganese dioxide, and a cathode coating is provided. The cathode coating includes a barrier layer overlying the solid electrolyte and a metallization layer overlying the barrier layer. The barrier layer contains a valve metal and the metallization layer contains a metal that exhibits an electrical resistivity of about 150 nΩ·m or less (at a temperature of 20° C.) and an electric potential of about −0.5 V or more.
Abstract:
A capacitor that comprises a solid electrolytic capacitor element, a casing material that encapsulates the capacitor element, an anode termination, and a cathode termination is provided. A nanocoating is disposed on at least a portion of the capacitor element, casing material, anode termination, cathode termination, or a combination thereof. The nanocoating has an average thickness of about 2,000 nanometers or less and contains a vapor-deposited polymer.
Abstract:
A solid electrolytic capacitor that contains an anode body, dielectric overlying the anode body, adhesion coating overlying the dielectric, and solid electrolyte overlying the adhesion coating. The solid electrolyte contains an inner conductive polymer layer and outer conductive polymer layer, at least one of which is formed from a plurality of pre-polymerized conductive polymer particles. Furthermore, the adhesion coating contains a discontinuous precoat layer containing a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
Abstract:
A capacitor assembly that is capable of exhibiting good properties under humid conditions. The ability to perform under such conditions is due in part to the use of an intrinsically conductive polymer in the solid electrolyte that contains repeating units having the following formula (I): wherein, R is (CH2)a—O—(CH2)b; a is from 0 to 10; b is from 1 to 18; Z is an anion; and X is a cation. Due to its unique structure, the polymer is not highly sensitive to moisture. Consequently, the resulting capacitor assembly may exhibit excellent electrical properties even when exposed to high humidity levels.
Abstract:
A solid electrolytic capacitor that comprises a sintered porous anode, a dielectric layer that overlies the anode body, and a solid electrolyte overlying the dielectric layer is provided. The anode is formed from a finely divided powder (e.g., nodular or angular) having a relatively high specific charge. Despite the use of such high specific charge powders, high voltages can be achieved through a combination of features relating to the formation of the anode and solid electrolyte. For example, relatively high press densities and sintering temperatures may be employed to achieve “sinter necks” between adjacent agglomerated particles that are relatively large in size, which render the dielectric layer in the vicinity of the neck less susceptible to failure at high forming voltages.
Abstract:
A capacitor assembly for use in high voltage and high temperature environments is provided. More particularly, the capacitor assembly includes a capacitor element containing an anodically oxidized porous, sintered body that is coated with a manganese oxide solid electrolyte. To help facilitate the use of the capacitor assembly in high voltage (e.g., above about 35 volts) and high temperature (e.g., above about 175° C.) applications, the capacitor element is enclosed and hermetically sealed within a housing in the presence of a gaseous atmosphere that contains an inert gas. It is believed that the housing and inert gas atmosphere are capable of limiting the amount of moisture supplied to the manganese dioxide. In this manner, the solid electrolyte is less likely to undergo an adverse reaction under extreme conditions, thus increasing the thermal stability of the capacitor assembly. In addition to functioning well in both high voltage and high temperature environments, the capacitor assembly of the present invention may also exhibit a high volumetric efficiency.
Abstract:
A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body, a first anode lead, and a second anode lead is provided. The first anode lead has a thickness that is larger than a thickness of the second anode lead. A portion of the first anode lead is embedded in the porous anode body, and a second portion of the first anode lead extends from a surface thereof in a longitudinal direction. Meanwhile, the second anode lead is electrically connected to the anode body for connection to an anode termination. In one embodiment, the second anode lead can be directly connected to a surface of the anode body. In another embodiment, the second anode lead can be indirectly connected to the anode body such as via attachment at an end of the second portion of the first anode lead.
Abstract:
A capacitor assembly that is capable of exhibiting good properties under dry conditions. The ability to perform under such conditions is due in part to the use of an intrinsically conductive polymer in the solid electrolyte that contains repeating units having the following formula (I): wherein, R is (CH2)a—O—(CH2)b; a is from 0 to 10; b is from 1 to 18; Z is an anion; and X is a cation.
Abstract:
A capacitor assembly for use in ultrahigh voltage environments is provided. To help achieve good performance at such high voltages, a variety of aspects of the assembly are controlled in the present invention, including the number of capacitor elements, the manner in which the capacitor elements are arranged and incorporated into the assembly, and the manner in which the capacitor elements are formed. For example, the capacitor assembly contains an anode termination to which the anode lead of a first capacitor element is electrically connected and a cathode termination to which the cathode of a second capacitor element is electrically connected. To help improve the breakdown voltage properties of the assembly, the capacitor elements are electrically connected in series such that the anode lead of the second capacitor element is also electrically connected to the cathode of the first capacitor element via a conductive member.
Abstract:
A capacitor for use in relatively high voltage environments is provided. During formation, anodization may be carried out in a manner so that the dielectric layer possesses a relatively thick portion that overlies an external surface of the anode and a relatively thin portion that overlies an interior surface of the anode. In addition to employing a dielectric layer with a differential thickness, the solid electrolyte is also formed from the combination of pre-polymerized conductive polymer particles and a hydroxy-functional nonionic polymer.