Abstract:
Embodiments of the present disclosure provide a display panel and a display device. The display panel includes a base substrate, a plurality of pixel units and a plurality of gate line groups. At least one pixel unit includes a plurality of sub-pixels. At least one sub-pixel includes a sensing transistor and a driving transistor. Each gate line group includes a first gate line and a second gate line; for the first gate line and the second gate line corresponding to the sub-pixels in the same row, the positions of the sensing transistors are closer to the second gate lines, and the positions of the driving transistors are closer to the first gate line, For two sub-pixels close to each other and located in different pixel units in the same row, at least one signal line has a double-layer alignment structure, and the double-layer alignments are electrically connected with each other.
Abstract:
A display substrate includes a light-emitting structure layer provided on a base; the light-emitting structure layer includes an anode layer, a first film layer group, and a second film layer group that are sequentially stacked; the anode layer includes one or more anodes; the first film layer group includes at least one film layer located between an anode and a cathode in an OLED device; the second film layer group includes a cathode, and at least one film layer located between the anode and the cathode in the OLED device; the orthographic projection of the second film layer group on the base includes the orthographic projection of the first film layer group on the base, an overlapping portion of all film layers in the first film layer group serves as a first portion of the first film layer group.
Abstract:
A pixel circuit array, a display panel, a method for driving a pixel circuit array, and a method for driving a display panel are provided. The pixel circuit array may include: a first signal sensing line (SENSE1) and a second signal sensing line (SENSE2); and N pixel circuits arranged in a column. All of the N pixel circuits are divided into a first group and a second group, each pixel circuit in the first group is coupled to the first signal sensing line (SENSE1), and each pixel circuit in the second group is coupled to the second signal sensing line (SENSE2) different from the first signal sensing line (SENSE1), where N is a positive integer greater than 1.
Abstract:
An image processing method, an image processing circuit and a display apparatus are provided. The image processing method includes: converting an RGB gray-scale value of each pixel in a current image frame into an RGB luminance value; converting the RGB luminance value into a first RGBW luminance value; determining a luminance level of the current image frame according to the first RGBW luminance value corresponding to each pixel; determining a luminance gain value of the current image frame according to the luminance level of the current image frame; calculating a second RGBW luminance value according to the luminance gain value and the first RGBW luminance value; and converting the second RGBW luminance value into an RGBW gray-scale value.
Abstract:
The present disclosure provides conversion circuit and operation method thereof, compensation device, and display apparatus. The conversion circuit includes a conversion unit connected between an output terminal and a first voltage terminal, and an input unit connected with an input terminal and the conversion unit respectively; the input unit is configured to receive current signal from the input terminal and supply the current signal to the conversion unit, and the conversion unit is configured to convert the current signal supplied by the input unit into voltage signal and output the voltage signal from the output terminal; and an equivalent resistance of the conversion unit is configured such that preset voltage corresponding to standard current is output from the output terminal when the standard current is input from the input terminal. With the technical solutions of the present disclosure, drive current for pixel can be accurately converted into voltage signal.
Abstract:
A gamma voltage debugging method for an electroluminescent display device, including: turning on sub-pixels in a test region to a maximum luminance value, and recording a driving current of an electroluminescent element at this time as a maximum reference current; calculating reference current values corresponding to respective gray scales according to the maximum reference current and a preset formula; and driving the sub-pixels in the test region to emit light, and for each driving current equal to a reference current value, recording a driving voltage value corresponding to the gray scale value as a gamma voltage resulted from the debugging.
Abstract:
Embodiments of this disclosure provide a gate driving circuit, a driving method thereof, a display panel and a display device. The gate driving circuit comprises: a corner cutting circuit and a scanning circuit. The corner cutting circuit is configured to output a corner cut voltage signal, wherein the corner cut voltage signal comprises a pulse whose edge is smoothed. The scanning circuit is configured to output a corner cut scanning signal based on the corner cut voltage signal, wherein the corner cut scanning signal comprises a pulse whose edge is smoothed.
Abstract:
The present disclosure relates to an output buffer, a method for operating the same, a source driver and a display panel. The output buffer includes a matching unit, an input unit and an output unit. The matching unit outputs a first control signal by dynamic element matching technique according to an input signal of the first voltage terminal. The input unit outputs a third control signal based on the first control signal and input signals of the input terminal and the second voltage terminal. The output unit controls an output signal of the output terminal in accordance with the third control signal and input signals of the first signal terminal, the second signal terminal, the third signal terminal, the fourth signal terminal and the second voltage terminal.
Abstract:
A method for detecting a display panel is disclosed. The display panel comprises an array substrate for driving an electroluminescent device. The array substrate comprises pixel electrodes arranged in an array and an array of pixel switches for driving the pixel electrodes. The method comprises the steps of: S1, applying a first driving signal to a manufactured array substrate, monitoring a first voltage on the pixel electrode; S2, forming a second electrode on each of the pixel electrodes of the array substrate; S3, applying a second driving signal to the array substrate formed with the second electrode, monitoring a second current flowing through the second electrode. The pixel electrode is one of the cathode and the anode of the electroluminescent device, the second electrode is the other one of the cathode and the anode of the electroluminescent device.
Abstract:
The present invention provides a pixel driving circuit, a driving method thereof, and a display device. The pixel driving circuit of the present invention comprises a data writing unit, a threshold compensation unit, a driving unit, a light-emitting unit, and a voltage stabilizing unit; the data writing unit is connected with a first node, a scan signal line and a data signal line; the first node is a connection node between the data writing unit and the driving unit; the threshold compensation unit is connected with the first node, a first control signal line, a first voltage terminal and the driving unit; the driving unit is connected with the light-emitting unit; and the voltage stabilizing unit is connected with the data writing unit, a second control signal line and the first voltage terminal.