Abstract:
A device is provided. The device includes an anode, a cathode and a double emissive layer disposed between the anode and the cathode. The double emissive layer includes a first organic emissive layer and a second organic emissive layer. The first organic emissive layer includes a first phosphorescent material having a concentration of 15-35 wt % in the first organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 400 nm and 500 nm; and a first host material having a triplet energy at least 0.2 eV and not more than 1.0 eV greater than the triplet energy of the first phosphorescent material. The second organic emissive layer includes a second phosphorescent material having a concentration of 15-35 wt % in the second organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 500 nm and 600 nm, and a third phosphorescent material having a concentration of 0.1-3 wt % in the second organic emissive layer, and a peak emissive wavelength in the visible spectrum at a wavelength between 600 nm and 700 nm. The second host material has a triplet energy greater than that of the third phosphorescent emissive material. The second organic emissive layer is disposed between the anode and the cathode, and is adjacent to the first organic emissive layer. The device also includes a blocking layer disposed adjacent to the second organic emissive layer and between the second organic emissive layer and the anode. The blocking layer has a lowest unoccupied molecular orbital that is at least 0.1 eV greater than the lowest unoccupied molecular orbital of the second host material. The device also includes a hole transport layer disposed between the blocking layer and the anode. At least one of the anode and the cathode is transmissive.
Abstract:
The present invention provides OLEDs incorporating microcavities. By combining a microcavity with a non-microcavity emissive layer, improved saturation and luminance may be achieved. OLEDs incorporating microcavities according to the invention may be used to produce white light, and as sub-pixels in full-color displays.
Abstract:
A device is provided that includes an organic emissive layer and a microcavity vertically stacked with the emissive layer, where the emissive layer is not in a microcavity. The microcavity may allow for improved saturation and intensity of emitted light at a variety of viewing angles.
Abstract:
The present invention relates to OLEDs comprising an electron impeding layer between the cathode and the emissive layer. An organic light emitting device, comprising: an anode; a hole transport layer; an organic emissive layer comprising an emissive layer host and an emissive dopant; an electron impeding layer; an electron transport layer; and a cathode disposed, in that order, over a substrate.
Abstract:
The present invention relates to efficient organic light emitting devices (OLEDs) doped with multiple light-emitting dopants, at least one dopant comprising a phosphorescent emitter, in a thin film emissive layer or layers. The present invention is directed to an efficient phosphorescent organic light emitting device utilizing a plurality of emissive dopants in an emissive region, wherein at least one of the dopants is a phosphorescent material. Thus, the present invention provides an organic light emitting device comprising an emissive region, wherein the emissive region comprises a host material, and a plurality of emissive dopants, wherein the emissive region is comprised of a plurality of bands and each emissive dopant is doped into a separate band within the emissive region, and wherein at least one of the emissive dopants emits light by phosphorescence.
Abstract:
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ two emitters in a single emissive region to sufficiently cover the visible spectrum. White emission is achieved from two emitters in a single emissive region through the formation of an aggregate by one of the emissive centers. This allows the construction of simple, bright and efficient WOLEDs that exhibit a high color rendering index.