摘要:
A method mechanism is provided for communication between host systems using a transaction protocol and shared memories. Shared memories are initialized based on a discovery process in a communication fabric such that at least one endpoint has address ranges in shared memories of at least two host systems. A transaction oriented protocol may be established for using the shared memories of the host systems to communicate between root complexes and endpoints of the same or different host systems. The transaction oriented protocol specifies a series of transactions to be performed by the various elements, e.g., root complex or endpoint, to push or pull data. Various combinations of push and pull transactions may be utilized.
摘要:
Mechanisms for enabling both native and non-native input/output virtualization (IOV) in a single I/O adapter are provided. The mechanisms allow a system with a large number of logical partitions (LPARs) and system images to use IOV to share a native IOV enabled I/O adapter or endpoint that does not implement the necessary number of virtual functions (VFs) for each LPAR and system image. A number of VFs supported by the I/O adapter, less one, are assigned to LPARs and system images so that they may make use of native IOV using these VFs. The remaining VF is associated with a virtual intermediary (VI) which handles non-native IOV of the I/O adapter. Any remaining LPARs and system images share the I/O adapter using the non-native IOV via the VI. Thus, any number of LPARs and system images may share the same I/O adapter or endpoint.
摘要:
Mechanisms to address the situation where an input/output (I/O) fabric is shared by more than one logical partition (LPAR) and where each LPAR can share with the other LPARs an I/O adapter (LOA) are provided. In particular, each LPAR is assigned its own separate address space to access a virtual function (VF) assigned to it such that each LPAR's perception is that it has its own independent IOA. Each VF may be shared across multiple LPARs. Facilities are provided for management of the shared resources of the IOA via a Physical Function (PF) of the IOA by assignment of that PF to an I/O Virtualization Management Partition (IMP). The code running in the IMP acts as a virtual intermediary to the VFs for fully managing the VF error handling, VF reset, and configuration operations. The IMP also acts as an interface to the PF for accessing common VF functionality. Furthermore, the functions of resource assignment and management relative to the VFs and the client partitions that use those VFs, which might normally be done by an entity like a hypervisor, are implemented by this IMP.
摘要:
Mechanisms that address the situation where an input/output (I/O) fabric is shared by more than one logical partition (LPAR) and where each LPAR can share with the other LPARs an I/O adapter (IOA) are provided. In particular, each LPAR is assigned its own separate address space to access a virtual function (VF) assigned to it such that each LPAR's perception is that it has its own independent IOA. Each VF may be shared across multiple LPARs. Facilities are provided for management of the shared resources of the IOA via a Physical Function (PF) of the IOA by assignment of that PF to an I/O Virtualization Management Partition (IMP). The code running in the IMP acts as a virtual intermediary to the VFs for fully managing the VF error handling, VF reset, and configuration operations. The IMP also acts as an interface to the PF for accessing common VF functionality.
摘要:
Mechanisms for communication between host systems using a socket connection and shared memories are provided. With such socket-based communication, a work queue in the host systems may be used to listen for incoming socket initialization requests. A first host system that wishes to establish a socket communication connection with a second host system may generate a socket initialization request work queue element in its work queue and may inform the second host system that the socket initialization request work queue element is available for processing. The second host system may then accept or deny the request. If the second host system accepts the request, it returns the second half of the socket's parameters for use by the first host system in performing socket based communications between the first and second host systems.
摘要:
Mechanisms for migration of single root stateless virtual functions are provided. A Single-Root PCI Configuration Manager (SR-PCIM) provides a system image (SI) with possible virtual function (VF) migration scenarios supported by the endpoint (EP). The SR-PCIM may be instructed that a stateless migration of a VF and its associated application(s) from one SI to another is required. Outstanding requests to the VF are completed and any applications associated with the VF are removed from the SI and the VF is detached from its associated physical function (PF). The SWI may then attach the VF to a target PF which may be in the same or a different EP. The SWI makes the VF available to the SI with which the VF is now associated and the SI configures the VF thereby making it available for use by associated applications.
摘要:
Mechanisms for hot-plug/remove of a new component in a running communication fabric, such as a PCIe fabric, are provided. With these mechanisms, the addition of a new component in the fabric is detected and an event is sent to a multiple root fabric configuration manager. The multiple root fabric configuration manager gathers information about the new component and updates its I/O component tree structure in its configuration data structure to include the new component. The new component may then be utilized via the updated configuration data structure. When a component is to be removed, the multiple root fabric configuration manager receives an event indicating the component to be removed, determines which branches of the tree structure are affected by the removal, and updates its configuration data structure accordingly to remove the component and its associated components from the virtual plane of the removed component.
摘要:
Mechanisms for differentiating traffic types in a multi-root PCI Express environment are provided. The mechanisms generate a first mapping data structure that, for each single-root virtual hierarchy in the multi-root data processing system, associates a plurality of traffic classes with a plurality of priority groups and maps each traffic class in the plurality of traffic classes to a corresponding virtual channel in a plurality of virtual channels. Moreover, a second mapping data structure is generated that maps each virtual channel in the plurality of virtual channels to corresponding virtual link in a plurality of virtual links of the multi-root data processing system. Traffic of a particular priority group is routed from a single-root virtual hierarchy to a particular virtual link in the plurality of the virtual links based on the first mapping data structure and second mapping data structure.
摘要:
The system and method address the situation where an input/output (I/O) fabric is shared by more than one logical partition (LPAR) and where each LPAR can share with the other LPARs an I/O adapter (IOA). In particular, each LPAR is assigned its own separate address space to access a virtual function (VF) assigned to it such that each LPAR's perception is that it has its own independent IOA. Each VF may be shared across multiple LPARs. Facilities are provided for management of the shared resources of the IOA via a Physical Function (PF) of the IOA by assignment of that PF to an I/O Virtualization Management Partition (IMP). The code running in the IMP acts as a virtual intermediary to the VFs for fully managing the VF error handling, VF reset, and configuration operations. The IMP also acts as an interface to the PF for accessing common VF functionality. Furthermore, the functions of resource assignment and management relative to the VFs and the client partitions that use those VFs, which might normally be done by an entity like a hypervisor, are implemented by this IMP.
摘要:
The system and method address the situation where an input/output (I/O) fabric is shared by more than one logical partition (LPAR) and where each LPAR can share with the other LPARs an I/O adapter (IOA). In particular, each LPAR is assigned its own separate address space to access a virtual function (VF) assigned to it such that each LPAR's perception is that it has its own independent IOA. Each VF may be shared across multiple LPARs. Facilities are provided for management of the shared resources of the IOA via a Physical Function (PF) of the IOA by assignment of that PF to an I/O Virtualization Management Partition (IMP). The code running in the IMP acts as a virtual intermediary to the VFs for fully managing the VF error handling, VF reset, and configuration operations. The IMP also acts as an interface to the PF for accessing common VF functionality.