Abstract:
According to one embodiment, a data center fabric network system includes a controller, a plurality of switches connected to the controller via a plurality of communication links, a source device connected to at least a first switch of the plurality of switches, a destination device connected to at least a second switch of the plurality of switches, and wherein the controller is adapted for: creating a topology of the data center fabric network system, determining paths between the plurality of switches, calculating one or more disjoint multi-paths from the source device to the destination device based on the topology, and writing the one or more disjoint multi-paths into a forwarding table of at least one of: the source device, the first switch, and a nearest shared switch to the source device.
Abstract:
An approach is provided which a system selects a first virtual function from a plurality of virtual functions executing on a network adapter that includes a memory area. Next, the system allocates, in the memory area, a memory corresponding to the first virtual function. The system then stores one or more translation entries in the allocated memory partition, which are utilized to send data traversing through the first virtual function. As such, the system sends, utilizing one or more of the translation entries, the data packets from the network adapter to one or more destinations. In turn, the system dynamically resizes the memory partition based upon an amount of the memory partition that is utilized to store the one or more translation entries.
Abstract:
An approach is provided in which a virtual function, which executes on a network adapter, receives a data packet from a first virtual machine. A translation entry is identified that corresponds to sending the data packet from the first virtual machine to a second virtual machine, and a determination is made as to whether an onboard memory partition assigned to the virtual function includes the identified translation. If the onboard memory location includes the translation entry, the data packet is sent to the destination virtual machine using the translation entry retrieved from the onboard memory partition. Otherwise, if the translation entry is not located in the onboard memory partition, the data packet is sent to the destination virtual machine using a translation entry retrieved from an off board memory location.
Abstract:
Multiple logical partitions are provided access to a self-virtualizing input/output device of a data processing system via multiple dedicated partition adjunct instances. Access is established by: interfacing each logical partition to one or more associated partition adjunct instances, each partition adjunct instance coupling its associated logical partition to one of a virtual function or a queue pair of the self-virtualizing input/output device, and each partition adjunct instance being a separate dispatchable state and being created employing virtual address space donated from the respective logical partition or a hypervisor of the data processing system, and each partition adjunct instance including a device driver for the virtual function or queue pair of the self-virtualizing input/output device; and providing each logical partition with at least one virtual input/output which is interfaced through the logical partition's respective partition adjunct instance(s) to a virtual function or queue pair of the self-virtualizing input/output device.
Abstract:
A physical host executes a virtual machine monitor (VMM) that instantiates a plurality of virtual machines (VMs). The VMM supports processing of a virtual link manager (VLM) that deploys and configures a plurality of Layer 2 virtual links sharing bandwidth of a Layer 2 physical link between the physical host and an access switch. The VMM communicates parameters of the plurality of virtual links with the access switch.
Abstract:
An approach is provided in which a computer system selects a virtual domain from multiple virtual domains, which are each overlayed onto a physical network and are independent of physical topology constraints of the physical network. The computer system selects, from the selected virtual domain, a first virtual group that includes one or more first virtual network endpoints. Next, the computer system selects, from the selected virtual domain, a second virtual group that includes one or more second virtual network endpoints. In turn, the computer system creates a logical link policy that includes one or more actions corresponding to sending data between the first virtual group and the second virtual group.
Abstract:
An approach is provided which a system selects a first virtual function from a plurality of virtual functions executing on a network adapter that includes a memory area. Next, the system allocates, in the memory area, a memory corresponding to the first virtual function. The system then stores one or more translation entries in the allocated memory partition, which are utilized to send data traversing through the first virtual function. As such, the system sends, utilizing one or more of the translation entries, the data packets from the network adapter to one or more destinations. In turn, the system dynamically resizes the memory partition based upon an amount of the memory partition that is utilized to store the one or more translation entries.
Abstract:
A system and method for providing a memory region/memory window (MR/MW) access notification on a system area network are provided. Whenever a previously allocated MR/MW is accessed, such as via a remote direct memory access (RDMA) read/write operation, a notification of the access is generated and written to a queue data structure associated with the MR/MW. In one illustrative embodiment, this queue data structure may be a MR/MW event queue (EQ) data structure that is created and used for all consumer processes and all MR/MWs. In other illustrative embodiments, the EQ is associated with a protection domain. In yet another illustrative embodiment, an event record may be posted to an asynchronous event handler in response to the accessing of the MR/MW. In another illustrative embodiment, a previously posted queue element may be used to generate a completion queue element in response to the accessing of the MR/MW.
Abstract:
According to one embodiment of the present disclosure, an approach is provided in which a policy server receives a request for a policy from a requestor. The policy server identifies an initiating virtual machine; the initial virtual machine's corresponding virtual network; and a destination virtual machine. Next, a policy corresponding to sending data from the first virtual machine to the second virtual machine is selected. The policy includes one or more logical references to the virtual network and does not include a physical reference to a physical entity located on a physical network. In turn, a physical path translation corresponding to the selected policy is identified and sent to the requestor.
Abstract:
According to one embodiment of the present disclosure, an approach is provided in which a policy server receives a request for a policy from a requestor. The policy server identifies an initiating virtual machine; the initial virtual machine's corresponding virtual network; and a destination virtual machine. Next, a policy corresponding to sending data from the first virtual machine to the second virtual machine is selected. The policy includes one or more logical references to the virtual network and does not include a physical reference to a physical entity located on a physical network. In turn, a physical path translation corresponding to the selected policy is identified and sent to the requestor.