Abstract:
A scintillator unit that can reduce crosstalk when the scintillator unit includes a plurality of scintillators and a radiation detector are provided. More specifically, a scintillator unit includes a reflective layer between a plurality of scintillators and the plurality of scintillators, wherein an adhesive layer and a low-refractive-index layer with a lower refractive index than the adhesive layer are located in this order on the scintillators between the scintillators and the reflective layer.
Abstract:
Provided are a powder for laser manufacturing which can be stably manufactured and from which a three-dimensional manufactured object ensuring a manufacturing accuracy can be obtained and a using method thereof. A powder for ceramic manufacturing for obtaining a manufactured object by repeatedly sintering or fusing and solidifying in sequence a powder in an irradiation portion with laser light, in which the powder includes a plurality of compositions, at least one composition of the compositions is an absorber that relatively strongly absorbs the laser light compared to other compositions, and at least a part of the absorber changes to a different composition that relatively weakly absorbs the laser light by irradiation with the laser light and a using method of a powder in which the powder is used.
Abstract:
A method for manufacturing a ceramic article including (i) a step of irradiating a powder mainly containing a ceramic material with an energy beam to sinter or melt and solidify the powder into a solidified portion, wherein the step is repeated a predetermined number of times to sequentially bond the resulting solidified portions together to obtain a ceramic modeling object, (ii) a step of allowing the shaped ceramic object to absorb a metal component-containing liquid that contains inorganic particles containing a metal element; and (iii) a step of heating the shaped ceramic object that has absorbed the metal component-containing liquid.
Abstract:
A scintillator unit with less light leakage from a scintillator to an adhesive layer and a radiation detector that can improve sensitivity to radiation and the resolution of an image to be formed. Specifically disclosed is a scintillator unit including an adhesive layer between a scintillator and a supporting member and a low-refractive-index layer with a lower refractive index than the adhesive layer between the scintillator and the adhesive layer.
Abstract:
An article including an inorganic compound according to the present invention includes a porous part and a no-porous frame body surrounding the porous part in a plane direction, and includes a stress relaxation part between the porous part and the frame body.
Abstract:
A method of producing a ceramic manufactured object including (i) a step of leveling a ceramic powder to form a powder layer, (ii) a step of irradiating the powder layer with a laser beam based on three-dimensional data to crystallize an irradiated site, and (iii) performing the steps (i) and (ii) in repetition, wherein in the step (ii), a surface of the powder layer is irradiated with the laser beam in an unfocused state.
Abstract:
A powder for ceramic shaping to be used for obtaining a structure by repeating the execution of a process of sequential melting and solidification by irradiation of a laser beam contains inorganic compound particles and an organic compound, the organic compound being provided on the surfaces of the inorganic compound particles, and the organic compound has an absorption band that overlaps the wavelength of the laser beam.
Abstract:
In a related-art composite scintillator in which pores in a porous scintillator are filled with an absorbing member or the like, as the ratio between the structural period of the composite and the thickness in an optical waveguide direction becomes smaller, almost all light is absorbed, and, in some cases, it is difficult to obtain a sufficient light amount for forming an adequate image. Provided is a scintillator including multiple first phases having directionality in a direction connecting two surfaces thereof which are not located on a same surface and a second phase positioned around the first phases, in which each of the multiple first phases is in the shape of a column, and an absorbing portion is provided in part of one of the two kinds of phases, which has a lower refractive index.
Abstract:
In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
Abstract:
In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.