Abstract:
An image processing apparatus includes an acquiring unit configured to acquire first image data representing gradation of a black character image, and second image data having a resolution lower than that of the first image data and representing gradation of a color image; a first generating unit configured to generate first dot data in accordance with a gradation value of each pixel in the first image data acquired by the acquiring unit; and a second generating unit configured to assign a number of dots to each pixel in the second image data, the number being greater than the maximum number of dots to be assigned by the first generating unit to each pixel in the first image data, and generating dot data for forming an image having an image attribute, in accordance with a gradation value of each pixel in the second image data acquired by the acquiring unit.
Abstract:
Provided is a dither pattern generation method so that a dot arrangement having excellent dispersibility can be obtained in low-gradation areas for single colors and for mixed colors. The dither pattern generation method generates dot patterns for low-gradation areas having threshold values 1 to S so that high dispersibility is obtained in a cyan dot pattern and a magenta dot pattern, and so that in a combined dot pattern made by combining these dot patterns there are no overlapping pixels. The dither pattern generation method then sets threshold values for a cyan dither pattern and a magenta dither pattern based on these generated dot patterns.
Abstract:
Provided is a quantization processing method using dither patterns that make it possible to obtain a dot array having excellent dispersibility even in the case of a single color or mixed color inks. For this purpose, first and second dither patterns are prepared in order to respectively quantize multivalued data for a first ink to different pieces of binary data, respectively. Also, third and fourth dither patterns are prepared in order to respectively quantize multivalued data for a second ink to different pieces of binary data. Further, on the basis of a combination of the multivalued data on the first ink and the multivalued data on the second ink, a quantization unit for the first ink, and a quantization unit for the second ink are determined.
Abstract:
Image ink data is generated which represents the absence of ejection of ink corresponding to pixels for which text ink data represents the ejection of ink.
Abstract:
As viewed for each processing unit in head shading (HS) processing, a processing unit width is more than one pixel, so that a threshold arrangement corresponding to a target quality of an image intended by a dither matrix is kept while a possibility of avoiding zero dots from being generated can be enhanced. Moreover, the threshold arrangement is kept while a possibility of generating the same number of dots in processing units can be enhanced. Consequently, the threshold arrangement corresponding to a predetermined target quality of an image intended by a dither matrix is kept while it is possible to reduce occurrence of uneven density caused by the HS processing. Thus, it is possible to prevent the threshold arrangement from being limited by the HS processing according to the degree of the reduction.
Abstract:
When an input image is shifted by 640 pixels from a test pattern with reference to the position of a nozzle, the remainder is obtained by dividing 640 pixels by pixels of the dither matrix in an x direction. For example, when the size of the dither matrix in the x direction is 256 pixels, the dither matrix is shifted by 128 pixels in a direction reverse to the x direction. In this manner, the phase of the dither matrix at the time of the quantization during test pattern printing matches the phase of the dither matrix at the time of the quantization during input image printing. Consequently, unevenness of the dither matrix at a position N becomes the same in both of the test pattern and the input image. The HS correction to density unevenness caused by the unevenness of the dither matrix becomes suitable for the input image.
Abstract:
In low-resolution processing (reduction processing) in which input image data is separated into character print data and image print data to generate print data of lower resolution than that of the input image data, if a plurality of pixels is simply reduction-processed to one pixel, color of a color image surrounding a character may change. In an image processing method, calculation for performing reduction processing so that the plurality of pixels in the input image data corresponds to one pixel in the print data is performed as follows. A ratio of using a pixel value of a character attribute pixel in the calculation is set to 0, or set smaller than a ratio of using a pixel value of an image attribute pixel. As a result, a change in the color of the color image surrounding the character can be prevented.
Abstract:
An image processing apparatus includes an acquiring unit configured to acquire first image data representing gradation of a black character image, and second image data having a resolution lower than that of the first image data and representing gradation of a color image; a first generating unit configured to generate first dot data in accordance with a gradation value of each pixel in the first image data acquired by the acquiring unit; and a second generating unit configured to assign a number of dots to each pixel in the second image data, the number being greater than the maximum number of dots to be assigned by the first generating unit to each pixel in the first image data, and generating dot data for forming an image having an image attribute, in accordance with a gradation value of each pixel in the second image data acquired by the acquiring unit.
Abstract:
An image processing method is provided for acquiring additional information from image information obtained by shooting a printed product on which the additional information is multiplexed by at least one of a plurality of different multiplexing methods, the method comprising: attempting decoding of the additional information from the image information by a plurality of different decoding methods corresponding to the plurality of different multiplexing methods; and outputting, by a unit, the additional information successfully decoded.
Abstract:
A control method for an image processing apparatus that generates a layout image by arranging an image in a template includes specifying, as a designated object, at least one object of a plurality of objects including a first object and a second object according to a combination of a plurality of setting values including a setting value regarding the first object and a setting value regarding the second object based on the received input, selecting image data from a plurality of pieces of image data, and outputting a layout image in which an image represented by the selected image data is arranged in a template, wherein image data representing an image that contains an object specified as the designated object is selected in preference to image data representing an image that does not contain an object specified as the designated object from the plurality of pieces of image data.