Abstract:
A system and method for torque compensation in a switched reluctance (SR) machine disposed on a machine is disclosed. The system may comprise a SR machine, an inverter and a controller. The controller is in operable communication with the inverter and is configured to determine a commanded main current associated with energization by a main current of a first portion of the plurality of windings for a controlling phase, and determine a commanded parasitic current associated with energization by a parasitic current of a second portion of the windings in a non-controlling phase. The controller is further configured to determine an offset current based on the commanded parasitic current, and determine a target current based on a first sum of the commanded main current and the offset current, and command the inverter to actuate the target current in the first portion of the windings during the controlling phase.
Abstract:
An electrical inverter may include a plurality of phase modules to provide a plurality of phase outputs. Two or more of the plurality of phase modules may share a common insulated-gate bipolar transistor.
Abstract:
A control system for a switched reluctance (SR) machine having a rotor and a stator is provided. The control system may include a converter circuit in electrical communication between the stator and a common bus, and a controller configured to monitor a bus voltage of the converter circuit and a phase current of the SR machine. The controller may be configured to determine a phase voltage based on one or more of main pulses and any diagnostic pulses, determine an estimated flux based on the phase voltage and an associated mutual voltage, determine a rotor position based at least partially on the estimated flux, and control the SR machine based on the rotor position and a desired torque.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A method of controlling a motor is provided. The method may determine one of a switching period, a fundamental cycle, and a current target per phase leg of the motor having at least one high voltage transition point; determine a dwell period to be enforced at the transition point between an engagement of a first switch of the phase leg and an engagement of a second switch of the phase leg where each of the first switch and the second switch may be selectively engageable between a first state and a second state; engage the first switch from the first state to the second state at the transition point; and engage the second switch from the first state to the second state after the transition point and upon expiration of the dwell period.
Abstract:
A method of estimating an initial rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may comprise the steps of driving a phase current in each of a plurality of phases of the SR machine to a predefined limit, performing an integration of a common bus voltage associated with each phase, determining a flux value for each phase based on the integrations, and determining the initial rotor position based on the flux values.
Abstract:
Techniques are described to continuously calculate an inverter DC power of a synchronous machine, e.g., motor or generator, based on the individual phase currents, DC link voltage, and gate signals, which can be compared against the commanded mechanical power based of the estimated rotor speed and commanded torque. A controller can determine whether to shut down the inverter, such as the pulse width modulation (PWM), if the DC power is greater than a threshold value. Such a threshold can be defined to allow an acceptable position and speed estimation error margin.
Abstract:
A work machine includes a frame, a traction system supporting the frame, a power source mounted on the frame, a switched reluctance motor, an inverter configured to control power to the motor from a power source, and a controller. The controller is configured to receive a signal indicating a desired torque and determine if the desired torque is between an upper threshold and a lower threshold. If the desired torque is between the upper threshold and the lower threshold, pulse width modulation is used to produce a PWM adjusted torque command, and the motor is commanded based on the PWM adjusted torque command. The PWM adjusted torque command is configured to cycle between the upper threshold and the lower threshold to produce the desired torque.
Abstract:
Power based self-sensing of a rotor position of an SR motor at mid to high speeds and low torque is achieved by an SR motor control system by comparing the motor power to an injection maximum power. A position current pulse is injected to a stator pole in response to the motor power being less than the injection maximum power. An actual stator current created by the position current pulse is compared to an estimated stator current, and a stored estimated rotor position in a memory is updated to a new estimated rotor position if the actual stator current is not equal to the estimated stator current.
Abstract:
A control system for a rotary electric machine includes a controller configured to generate dynamic input current data based upon a dynamic analysis of self flux data, mutual flux data, and saturation scaling factor data. Upon generating a torque request, the controller is configured to determine a desired electrical input based upon the dynamic input current data to generate the desired output torque. The desired electrical input includes a magnitude and duration of an electrical pulse and a desired angular position of the rotor of the rotary electric machine relative to the stator of the machine. The controller determines an angular position of the rotor and generates an operating command to generate the desired electrical input at the desired angular position of the rotor to propel the rotary electric machine and generate the desired output torque. A rotary electric machine and method of operating same are provided.