MULTICORE OPTICAL FIBER WITH CHLORINE DOPED CORES

    公开(公告)号:US20210181408A1

    公开(公告)日:2021-06-17

    申请号:US17112084

    申请日:2020-12-04

    Abstract: A multicore optical fiber includes a first core, a second core, and a common cladding. The first core includes silica and greater than 3 wt % chlorine, a first core centerline, a relative refractive index Δ1MAX, and an outer radius r1. The second core includes silica and greater than 3 wt % chlorine, a second core centerline, a relative refractive index Δ2MAX, and an outer radius r2. A spacing between the first core centerline and the second core centerline is at least 28 micrometers and a crosstalk between the first core and the second core is ≤−30 dB, as measured for a 100 km length of the multicore optical fiber operating at a wavelength of 1550 nm.

    LOW BEND LOSS OPTICAL FIBER WITH A GERMANIA DOPED CORE

    公开(公告)号:US20180321438A1

    公开(公告)日:2018-11-08

    申请号:US15957414

    申请日:2018-04-19

    Abstract: A single mode optical fiber including a germania doped silica central core region having outer radius r1 and refractive index Δ1, a maximum refractive index Δ1max, and 0.32%≤Δ1max≤0.45%, and a core alpha profile (Coreα). In various embodiments, the optical fiber also contains a cladding region including: (i) a second inner cladding region or ring region surrounding the first inner cladding region; or (ii) an inner cladding region or pedestal region surrounding the germania doped silica central core region. The corresponding resultant optical fibers exhibit a 22 m cable cutoff less than or equal to 1260 nm, a macrobending loss at 1550 nm of ≤0.75 dB/turn on a 20 mm diameter mandrel, a zero dispersion wavelength, λ0, of 1300 nm≤λ0≤1324 nm, and a mode field diameter at 1310 nm of 8.2 microns≤MDF1310nm≤9.6 microns.

    Low bend loss optical fiber
    35.
    发明授权

    公开(公告)号:US10082622B2

    公开(公告)日:2018-09-25

    申请号:US15812560

    申请日:2017-11-14

    Abstract: Disclosed herein are optical waveguide fibers comprising: (I) a core comprising an outer radius r1, a maximum refractive index delta percent Δ1max and core alpha, α, of larger than 5; and (II) a cladding surrounding the core, the cladding comprising: (i) an inner cladding region having outer radius r2 and refractive index delta percent Δ2, wherein Δ1max>Δ2; (ii) a trench region surrounding the inner cladding region, the trench region having an outer radius, r3 where r3≥10 microns and refractive index delta percent Δ3; and (iii) an outer cladding region having chlorine concentration of ≥1.2 wt. % surrounding the trench region and comprising refractive index delta percent Δ4, wherein Δ1max>Δ4 and Δ2>Δ3, and Δ4>Δ3 and wherein the difference between Δ4 and Δ3 is ≥0.12 percent.

    LOW-LOSS AND LOW-BEND-LOSS OPTICAL FIBER
    36.
    发明申请

    公开(公告)号:US20180252866A1

    公开(公告)日:2018-09-06

    申请号:US15759648

    申请日:2016-09-14

    CPC classification number: G02B6/03627 G02B6/02009 G02B6/0281

    Abstract: A single-mode fiber with low loss and low bend loss is disclosed. The fiber is single mode and has a central core (10), an inner cladding (20) and an outer cladding (30). The central core (10) has a radius r1 and relative refractive index with a maximum value of Δ1max and a core alpha greater than 1 and less than 10, and a Ge02 dopant concentration of greater than 1 wt. % and less than or equal to 5 wt. %. The inner cladding (20) has an outer radius r2>9 micrometers and a relative refractive index Δ2 where Δ2 is less then −0.15%. The outer cladding (30) has a refractive index Δ3, wherein Δ1>Δ3>Δ2. The difference Δ3−Δ2>0.005%. The inner cladding includes fluorine having a concentration of greater than or equal to 0.5 wt. % and the outer cladding is updoped with respect to inner cladding.

    Multimode fiber with intermediate clad layer

    公开(公告)号:US09841559B2

    公开(公告)日:2017-12-12

    申请号:US15429421

    申请日:2017-02-10

    CPC classification number: G02B6/0288 G02B6/03638

    Abstract: An optical fiber including a multimode core having a radius, R1, and a maximum relative refractive index, Δ1MAX, at a wavelength λ0, an inner clad layer surrounding the core and having a radial thickness, T2, and a minimum relative refractive index, Δ2MIN, of about 0.0% at a wavelength of λ0, an intermediate clad layer surrounding the inner clad layer and having a radial thickness, T3, and a maximum relative refractive index Δ3MAX and an outer clad layer surrounding the inner clad layer and having a radial thickness, T4, and a maximum relative refractive index, Δ4MIN, at a wavelength of λ0. The optical fiber satisfies the following relationship: Δ1MAX>Δ3MAX>Δ2MIN, and the optical fiber exhibits an overfilled bandwidth of greater than or equal to about 1.5 GHz-km at λ0.

    METHOD OF MAKING UPDOPED CLADDING BY USING SILICON TERTRACHLORIDE AS THE DOPANT
    40.
    发明申请
    METHOD OF MAKING UPDOPED CLADDING BY USING SILICON TERTRACHLORIDE AS THE DOPANT 审中-公开
    通过使用硅酮作为鞣剂制备更好的覆盖物的方法

    公开(公告)号:US20160152510A1

    公开(公告)日:2016-06-02

    申请号:US14997780

    申请日:2016-02-15

    Abstract: One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ )  0.209748   T dop  Exp  [ - 5435.33 / T dop ] y SiCl   4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.

    Abstract translation: 本公开的一个实施方案涉及一种制造光纤的方法,包括以下步骤:(i)将二氧化硅基预型体暴露于具有烟炱密度的至少一个多孔玻璃区域; 在掺杂温度Tdop下将SiCl 4的SiCl 4摩尔分数为ySiCl4的气体混合物混合,使得参数X大于0.03以形成经氯处理的预制件,其中X = 11 + [(&rgr; s - &rgr;))0.209748 实验表明,完全致密的煤烟层的密度为 和(ii)将氯处理的预制件暴露于高于1400℃的温度下,以完全烧结预成型件,以制备具有氯掺杂区域的烧结光纤预制件; 和(iii)从烧结的光学预型件拉制光纤。

Patent Agency Ranking