Abstract:
A multicore optical fiber includes a first core, a second core, and a common cladding. The first core includes silica and greater than 3 wt % chlorine, a first core centerline, a relative refractive index Δ1MAX, and an outer radius r1. The second core includes silica and greater than 3 wt % chlorine, a second core centerline, a relative refractive index Δ2MAX, and an outer radius r2. A spacing between the first core centerline and the second core centerline is at least 28 micrometers and a crosstalk between the first core and the second core is ≤−30 dB, as measured for a 100 km length of the multicore optical fiber operating at a wavelength of 1550 nm.
Abstract:
A single mode optical fiber, comprising: (i) a silica based core having a graded refractive index profile with an alpha of less than 5, a relative refractive index Δ1max, and an outer radius r1, wherein 10 microns>r1≥6.5 microns, the core comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index Δ2min, an inner radius r1, and an outer radius r2, wherein r2 than 9 microns, a zero dispersion wavelength
Abstract:
A single mode optical fiber including a germania doped silica central core region having outer radius r1 and refractive index Δ1, a maximum refractive index Δ1max, and 0.32%≤Δ1max≤0.45%, and a core alpha profile (Coreα). In various embodiments, the optical fiber also contains a cladding region including: (i) a second inner cladding region or ring region surrounding the first inner cladding region; or (ii) an inner cladding region or pedestal region surrounding the germania doped silica central core region. The corresponding resultant optical fibers exhibit a 22 m cable cutoff less than or equal to 1260 nm, a macrobending loss at 1550 nm of ≤0.75 dB/turn on a 20 mm diameter mandrel, a zero dispersion wavelength, λ0, of 1300 nm≤λ0≤1324 nm, and a mode field diameter at 1310 nm of 8.2 microns≤MDF1310nm≤9.6 microns.
Abstract:
An optical fiber comprising: (i) a chlorine doped silica based core comprising a core alpha (α)>10, and maximum refractive index delta Δ1max % and Cl concentration >1 wt %; (ii) a cladding surrounding the core, the cladding comprising: (a) an inner cladding region adjacent to and in contact with the core and having a refractive index delta Δ2 and a minimum refractive index delta Δ2min such that Δ2min
Abstract:
Disclosed herein are optical waveguide fibers comprising: (I) a core comprising an outer radius r1, a maximum refractive index delta percent Δ1max and core alpha, α, of larger than 5; and (II) a cladding surrounding the core, the cladding comprising: (i) an inner cladding region having outer radius r2 and refractive index delta percent Δ2, wherein Δ1max>Δ2; (ii) a trench region surrounding the inner cladding region, the trench region having an outer radius, r3 where r3≥10 microns and refractive index delta percent Δ3; and (iii) an outer cladding region having chlorine concentration of ≥1.2 wt. % surrounding the trench region and comprising refractive index delta percent Δ4, wherein Δ1max>Δ4 and Δ2>Δ3, and Δ4>Δ3 and wherein the difference between Δ4 and Δ3 is ≥0.12 percent.
Abstract:
A single-mode fiber with low loss and low bend loss is disclosed. The fiber is single mode and has a central core (10), an inner cladding (20) and an outer cladding (30). The central core (10) has a radius r1 and relative refractive index with a maximum value of Δ1max and a core alpha greater than 1 and less than 10, and a Ge02 dopant concentration of greater than 1 wt. % and less than or equal to 5 wt. %. The inner cladding (20) has an outer radius r2>9 micrometers and a relative refractive index Δ2 where Δ2 is less then −0.15%. The outer cladding (30) has a refractive index Δ3, wherein Δ1>Δ3>Δ2. The difference Δ3−Δ2>0.005%. The inner cladding includes fluorine having a concentration of greater than or equal to 0.5 wt. % and the outer cladding is updoped with respect to inner cladding.
Abstract:
An optical fiber including a multimode core having a radius, R1, and a maximum relative refractive index, Δ1MAX, at a wavelength λ0, an inner clad layer surrounding the core and having a radial thickness, T2, and a minimum relative refractive index, Δ2MIN, of about 0.0% at a wavelength of λ0, an intermediate clad layer surrounding the inner clad layer and having a radial thickness, T3, and a maximum relative refractive index Δ3MAX and an outer clad layer surrounding the inner clad layer and having a radial thickness, T4, and a maximum relative refractive index, Δ4MIN, at a wavelength of λ0. The optical fiber satisfies the following relationship: Δ1MAX>Δ3MAX>Δ2MIN, and the optical fiber exhibits an overfilled bandwidth of greater than or equal to about 1.5 GHz-km at λ0.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ ) 0.209748 T dop Exp [ - 5435.33 / T dop ] y SiCl 4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.