Abstract:
The embodiments described herein describe technologies for Module management, including Module creation and Module deployment to a target device in an operation phase of a manufacturing lifecycle of the target device in a cryptographic manager (CM) environment. One implementation includes a Root Authority (RA) device that receives a first command to create a Module and executes a Module Template to generate the Module in response to the first command The RA device receives a second command to create a deployment authorization message. The Module and the deployment authorization message are deployed to an Appliance device. A set of instructions of the Module, when permitted by the deployment authorization message and executed by the Appliance device, results in a secure construction of a sequence of operations to securely provision a data asset to the target device.
Abstract:
The embodiments described herein describe technologies for ticketing systems used in consumption and provisioning of data assets, such as a pre-computed (PCD) asset. A ticket may be a digital file or data that enables enforcement of usage count limits and uniqueness issuance ore sequential issuance of target device parameters. On implementation includes an Appliance device of a cryptographic manager (CM) system that receives a Module and a ticket over a network from a Service device. The Module is an application that securely provisions a data asset to a target device in an operation phase of a manufacturing lifecycle of the target device. The ticket is digital data that grants permission to the Appliance device to execute the Module. The Appliance device verifies the ticket to execute the Module. The Module, when executed, results in a secure construction of a sequence of operations to securely provision the data asset to the target device.
Abstract:
A device includes storage hardware to store a secret value and processing hardware coupled to the storage hardware. The processing hardware is to receive an encrypted data segment with a validator and derive a decryption key using the secret value and a plurality of entropy distribution operations. The processing hardware is further to verify, using the received validator, that the encrypted data segment has not been modified. The processing hardware is further to decrypt the encrypted data segment using the decryption key to produce a decrypted data segment responsive to verifying that the encrypted data segment has not been modified.
Abstract:
A bitstream for configuration of a programmable logic device is received, the bitstream comprising a data segment and authentication data associated with the data segment. The programmable logic device computes a hash of the data segment. The programmable logic device compares the computed hash of the data segment with the authentication data. Configuration of the programmable logic device halts responsive to a determination that the computed hash of the data segment does not match the authentication data. Configuration of the programmable logic device using the data segment continues responsive to a determination that the computed hash of the data segment matches the authentication data.
Abstract:
The embodiments described herein describe technologies for pre-computed data (PCD) asset generation and secure deployment of the PCD asset to a target device in an operation phase of a manufacturing lifecycle of the target device in a cryptographic manager (CM) environment. One implementation includes a Root Authority (RA) device that receives a first command to generate a unique PCD asset for a target device. In response, the RA device generates the PCD asset and packages the PCD asset for secure deployment of the PCD asset to the target device and to be used exclusively by the target device. The RA device deploys the packaged PCD asset in a CM system for identification and tracking of the target device.
Abstract:
A device includes storage hardware to store a secret value and processing hardware coupled to the storage hardware. The processing hardware is to receive an encrypted data segment with a validator and derive a decryption key using the secret value and a plurality of entropy distribution operations. The processing hardware is further to verify, using the received validator, that the encrypted data segment has not been modified. The processing hardware is further to decrypt the encrypted data segment using the decryption key to produce a decrypted data segment responsive to verifying that the encrypted data segment has not been modified.