Abstract:
A wavelength-converting device includes a first substrate, a second substrate and a first wavelength-converting material. The first substrate has a first region and a first engagement portion. The second substrate is disposed adjacent to the first substrate and having a second region and a second engagement portion. The second engagement portion and the first engagement portion have complementary shapes. The first wavelength-converting material is disposed on the second region for converting a light in a first waveband into a light in a second waveband. The light in the first waveband is transmitted through the first region, and the light in the second waveband is reflected by the second region. The first region and the second region are staggered, so that the first engagement portion and the second engagement portion are engaged and fixed with each other. As a result, the safety and stability are enhanced, and the noise is reduced.
Abstract:
Disclosed is a phosphor wheel including a substrate, a first phosphor region on the substrate, and a second phosphor region on the substrate. The first phosphor region and the second phosphor region are concentric patterns without any space between their interface. Moreover, the second phosphor region is set to surround the first phosphor region.
Abstract:
Disclosed is an image display apparatus, including a display device displaying right-eye images and left-eye images. A light-modulating device attached to the display device; and a temperature sensor monitoring the light-modulating device temperature. The light-modulating device deflects the right-eye and left-eye images to an observer's right and left eyes respectively without a temperature variation in the temperature sensor.
Abstract:
A phosphor device of an illumination system emitting a first color light in a first waveband region includes a first region having n sub-regions and n single-powder phosphor agents, wherein n is ≧2. The n single-powder phosphor agents are coated on the n sub-regions, respectively, for transforming the first color light in the first waveband region into n color lights in n waveband regions. The n sub-regions are arranged in a specific area ratio. The first color light in the first waveband region is cyclically transformed into a second color light in a second waveband region, a third color light in a third waveband region, . . . , and a (n+1)th color light in a (n+1)th waveband region in a specific time ratio according to the specific area ratio, such that the n color lights sequentially outputted in the specific time ratio are integrated as a specific color light.