Abstract:
An illumination system includes a solid-state light-emitting element and a wavelength-converting device. A first waveband light is emitted to an optical path by the solid-state light-emitting element. The wavelength-converting device is disposed on the optical path and includes a phosphor plate. The phosphor plate is a solid mixture having a phosphor agent and a binder. The weight percent of the phosphor agent is from 10 to 70, such that the first waveband light is transformed into a second waveband light. Under this circumstance, the efficiency of heat conduction of the phosphor plate is effectively enhanced, thereby enhancing the converting efficiency of the wavelength-converting device, which is strong enough to be applied to rotate with great rigidity. Meanwhile, not only the space requirement is reduced, but also the phenomena of hot spot and heat diffusion are avoided, such that the cost and difficulty of manufacturing the wavelength-converting device are significantly reduced.
Abstract:
A wavelength-converting device includes a first substrate, a second substrate and a first wavelength-converting material. The first substrate has a first region and a first engagement portion. The second substrate is disposed adjacent to the first substrate and having a second region and a second engagement portion. The second engagement portion and the first engagement portion have complementary shapes. The first wavelength-converting material is disposed on the second region for converting a light in a first waveband into a light in a second waveband. The light in the first waveband is transmitted through the first region, and the light in the second waveband is reflected by the second region. The first region and the second region are staggered, so that the first engagement portion and the second engagement portion are engaged and fixed with each other. As a result, the safety and stability are enhanced, and the noise is reduced.
Abstract:
An illumination module includes a light source, a color wheel, an actuator, and a reflective unit. The light source is for providing a light beam with a first wavelength band. The color wheel has an outer annular section and an inner annular section. The color wheel includes a wavelength conversion segment disposed at the outer annular section and a plurality of filter segments disposed at the inner annular section. The wavelength conversion segment is configured to convert a portion of the light beam with the first wavelength band into a light beam with a second wavelength band, and has at least one wavelength conversion material including yttrium aluminum garnet (YAG) phosphors. The filter segments are respectively configured to filter desired wavelength bands of the light beam. The reflective unit is configured to reflect the light beam passing through the outer annular section to the inner annular section.
Abstract:
A wavelength-converting device includes a first substrate, a second substrate and a first wavelength-converting material. The first substrate has a first region and a first engagement portion. The second substrate is disposed adjacent to the first substrate and having a second region and a second engagement portion. The second engagement portion and the first engagement portion have complementary shapes. The first wavelength-converting material is disposed on the second region for converting a light in a first waveband into a light in a second waveband. The light in the first waveband is transmitted through the first region, and the light in the second waveband is reflected by the second region. The first region and the second region are staggered, so that the first engagement portion and the second engagement portion are engaged and fixed with each other. As a result, the safety and stability are enhanced, and the noise is reduced.
Abstract:
Disclosed is a phosphor wheel including a substrate, a first phosphor region on the substrate, and a second phosphor region on the substrate. The first phosphor region and the second phosphor region are concentric patterns without any space between their interface. Moreover, the second phosphor region is set to surround the first phosphor region.
Abstract:
Disclosed is an image display apparatus, including a display device displaying right-eye images and left-eye images. A light-modulating device attached to the display device; and a temperature sensor monitoring the light-modulating device temperature. The light-modulating device deflects the right-eye and left-eye images to an observer's right and left eyes respectively without a temperature variation in the temperature sensor.
Abstract:
A display includes a light source, a first color wheel, a second color wheel, an actuator, a controller, and a light modulator. The light source is for providing a light beam. The first color wheel includes plural primary-color filtering areas, and the second color wheel includes plural left or right eye filtering areas. The actuator rotates the first color wheel and the second color wheel. The controller is for controlling the rotations of the first color wheel and the second color wheel, such that the light beam passing through the first color wheel and the second color wheel is filtered to plural left or right eye primary-color light beams with different spectra. The light modulator is for modulating the left or right primary-color light beams and projecting the modulated left or right primary-color light beams onto a screen to display an image.
Abstract:
An optical wavelength converter includes a first substrate, a first wavelength conversion material, and a second substrate. The first substrate has at least one first segment. The first wavelength conversion material is contained in the first segment for converting a first waveband light into a second waveband light. The second waveband light is reflected by the first segment. The second substrate is arranged beside the first substrate, and has at least one second segment. The first waveband light is transmitted through the second segment.
Abstract:
A projection device includes a laser source and a birefringent depolarizer. The birefringent depolarizer is a single wedge shape and is arranged in front of a projection lens. The laser source is configured to emit a laser beam to penetrate the birefringent depolarizer to be a projection beam having multiple polarization patterns different from polarization patterns of the laser beam. The projection beam is projected onto a projection screen through the projection lens. The polarization patterns are multiple different polarization directions.
Abstract:
An optical wavelength converter includes a first substrate, a first wavelength conversion material, and a second substrate. The first substrate has at least one first segment. The first wavelength conversion material is contained in the first segment for converting a first waveband light into a second waveband light. The second waveband light is reflected by the first segment. The second substrate is arranged beside the first substrate, and has at least one second segment. The first waveband light is transmitted through the second segment.