Abstract:
A control apparatus controlling a motor for driving an object includes: a relay allowing and interrupting electric power supply to the motor; switching devices in multiple phases for allowing and interrupting energization to windings; a controller for the relay and the switching devices; a current detecting circuit for a current flowing through a merging point of the windings and the switching devices; a current limit circuit for keeping an average of the current within a predetermined range; a standard position learning device for learning a standard position of the motor; a voltage detecting circuit for detecting a voltage applied to each switching device; and an error detecting device for detecting an error in the current detecting circuit based on the voltage and the current when the relay turns on, and all switching devices turn off.
Abstract:
A SBW-ECU prohibits driving of an electric motor by turning off power supply to the motor by a drive prohibition device, when a diagnosis part of a by-wire control circuit determines that a shift-by-wire system is abnormal or a monitor circuit determines that the by-wire control circuit is abnormal. In this case, the motor is stopped from rotating by execution of power supply phase fixation processing, by which a power supply phase of the motor is fixed without switchover, when the motor is driven to rotate at the time of determination of abnormality of the shift-by-wire system. Then the prohibition device prohibits driving of the motor by stopping the power supply to the motor.
Abstract:
A range switching device has a range switch mechanism driven by a motor and a control unit in the range switching device performs an abutment control for controlling the motor when a shift range is a range other than a P range at a start time of the control unit, based on a determination whether a switch permission condition is being fulfilled. The fulfillment of such a condition is determined based on a brake ON state of a vehicle and an IG switch ON state. When the switch permission condition is determined as fulfilled, the shift range is switched to the P range and the motor is rotated to perform the abutment control for learning a reference position.
Abstract:
A range switching device may switch a shift range despite resetting and restarting of a controller. When the controller is reset and restarted during a switching operation of the shift range and the shift range before or after being switched is a P range, the controller controls a motor to rotate the motor until a range switching mechanism abuts against a first limit position of a movable range of the range switching mechanism and learns a rotation position of the motor as a reference position of the motor. When the shift ranges before and after being switched are the ranges other that the P range, the controller controls the motor to rotate until the range switching mechanism abuts against a second limit position of the movable range and learns the rotation position of the motor as the reference position.
Abstract:
In a butting control, while performing a constant current control for a motor based on an output of a current sensor, the motor is driven by sequentially switching over a current supply phase of the motor in a one-phase current supply method, in which only one of the phases of the motor is powered. By performing the constant current control in the butting control, changes in a current value of each phase caused by temperature changes or aging changes is suppressed and hence a torque change of the motor is suppressed. In addition, by sequentially switching over the current supply phase of the motor in the one phase current supply method under the constant current control, a torque change of the motor can be suppressed while maintaining the current value of the current supply phase at a constant value.
Abstract:
In a range switchover control apparatus, a microcomputer checks, under a state that driving force of a motor is released, whether a range switchover mechanism is at rest and whether the range switchover mechanism is at rest in a bottom position, that is, whether an engagement member is fitted deep into a bottom of a range holding recess. If the range switchover mechanism is at rest in the bottom position, an encoder count value at a reference position (bottom position of a P-range) is calculated based on a present range and an encoder count value. By using the present range and the calculated encoder count value, an encoder count value of the bottom position of the present range can be determined. Based on this encoder count value, the encoder count value at the reference position can be calculated.