Abstract:
A motor control device controls a drive of a motor in a motor drive system including the motor and a detent mechanism. The detent mechanism has a detent member that rotates integrally with an output shaft to which the rotation of the motor is transmitted, and an engaging member that moves a valley portion by a rotation of the motor and positions the output shaft by stopping within a positioning range. The motor control device includes a positioning determination unit and an energization control unit. The positioning determination unit determines whether or not the engaging member is stopped within the positioning range based on control parameter other than a detection value of a motor rotation angle sensor that detects a motor rotation angle. When the energization control unit determines that the engaging member is stopped within the positioning range, the energization control unit turns off the energization of the motor.
Abstract:
A motor control device controls the drive of a motor including a motor winding. The motor control device is provided with an energization control unit and a standstill determination unit. The energization control unit controls the energization of the motor winding in accordance with a detection value of a rotational position sensor that detects a rotational position of the motor. The standstill determination unit determines a standstill of the motor. When a standstill of the motor is detected, the energization control unit controls energization in a change pattern that is an energization pattern different from a preset regular pattern in accordance with the detection value of the rotational position sensor.
Abstract:
A gear shifter performs an abutment learning, having a reference value learner that sets a reference value of a position signal when abutting a drive object to a stopper, and reduces warpage by (i) an all phase power supply supplying to the electric current to all of the plural phase coils of the direct current motor, and (ii) by reducing an amount of the electric current supplied to the coils, and by decreasing a pressing force of the drive object pressing the drive object against the stopper. The reference value determined at a warpage diminish time enables a reduction of variation of the reference value due to an influence of the warpage, thereby setting a robust reference value to account for an environmental condition such as a temperature change, for an accurate shift operation of the gear shifter.
Abstract:
A motor controller that is configured to switch power supply phases of the motor, to perform a limit-position abutment control by rotating the motor to a movable limit of a movable range of the rotation object to learn a reference position of the motor, perform a power-saving return control afterwards, in which a power supply to the motor is stopped, thereby returning a rotation position of the motor toward a target rotation position, and stop the rotation of the motor by simultaneously supplying power to a preset phase of the motor, when the rotation position of the motor reaches the target rotation position. In such manner, the power consumption as well as the heat generation of the motor are reduced for returning the rotation position of the motor to a preset rotation position after the abutment control of the motor.
Abstract:
A motor control apparatus includes a by-wire control circuit for sequentially switching an energized phase of a motor. The by-wire control circuit pre-stores a first table defining an energized phase address corresponding to each address and a second table defining an energized phase corresponding to each energized phase address. When receiving a drive permission code from a second control circuit, the by-wire control circuit switches the energized phase in a correct order of driving the motor, by calculating an address for access to the first table based on the drive permission code, calculating an energized phase address corresponding to the address by referring to the first table, and determining the energized phase corresponding to the energized phase address by referring to the second table.
Abstract:
A range switching device provides a feedback control for rotating a motor toward a target rotation position. When a target shift range is switched, the range switching device rotates the motor toward a target rotation position by sequentially switching power supply phases of the motor based on an encoder count value. When the motor rotates within a predetermined stop range, the feedback control ends and a power supply to the motor is stopped. However, if the motor has not rotated to the target rotation position after a predetermined time has elapsed from the stopping of the power supply to the motor, an open drive is performed, in which the power supply phase of the motor is sequentially switched by open-loop control and the motor is rotated in small and/or minute steps toward the target rotation position. In such manner, position accuracy of the shift range switching is improved.
Abstract:
A motor control apparatus includes a motor that rotates a controlled object, an encoder that outputs a pulse signal in synchronization with a rotation of the motor, and a control section that performs a feedback control so as to rotate the motor to the target rotational position. The control section includes a stopping and holding control portion. The stopping and holding control portion performs a stopping and holding process in which the stopping and holding control portion supplies electric current to the motor so as to stop and hold the motor for a current-supply holding time. The stopping and holding control portion sets the current-supply holding time on the basis of a rotation speed of the motor just before the stopping and holding process.
Abstract:
A motor control device controls a drive of a motor having a coil, and includes a drive circuit and a control unit. The drive circuit has a plurality of switching elements, and switches the energization of the coil. The control unit includes an energization control part and a current limit part. The energization control part accelerates and then decelerates the motor, and controls energization of the coil so that a rotation position of the motor stops at a target rotation position. The current limit part limits the current during a deceleration control.
Abstract:
A shift range control device that switches a shift range by controlling driving of a motor includes a plurality of control units and a plurality of motor drivers. The plurality of control units respectively have an energization control unit for controlling energization to the motor and an abnormality monitor unit for performing abnormality monitoring. The energization control unit turns off energization of the own system in a state of temporary abnormality before determining a decisive abnormality when abnormality affecting the other system is detected in the own system while driving the motor by the plurality of systems, and the abnormality monitor unit determines whether a state of abnormality is the temporary abnormality or the decisive abnormality after turning off energization of the own system.
Abstract:
A motor control device includes: a state monitoring unit that detects a power supply abnormality in which a power is not normally supplied to at least one of a rotation sensor and a motor; an abnormality determination unit that detects an abnormality of the rotation sensor based on an output signal of the rotation sensor; and a decision unit that decides whether to confirm the abnormality of the rotation sensor based on a detection result of the state monitoring unit and a detection result of the abnormality determination unit. When the state monitoring unit detects the power supply abnormality, the decision unit does not decide the abnormality of the rotation sensor even when the abnormality determination unit detects the abnormality of the rotation sensor.