Abstract:
A hydroplaning determination device that determines occurrence of a hydroplaning phenomenon in a vehicle includes a tire mount sensor including a vibration detection unit, a signal process unit and a transmission unit, and a vehicle body system including a receiver, a condition determination unit and a hydroplaning determination unit. The vibration detection unit is attached to a rear surface of a tire provided in a vehicle and outputs a detection signal according to a magnitude of vibration of the tire. The signal process unit generates a vibration data based on the detection signal. The hydroplaning determination unit determines, based on the vibration data, whether a hydroplaning phenomenon has occurred when the condition determination unit determines that a road surface condition is a wet condition in which a water film exists between the tire and a road surface.
Abstract:
A road surface condition estimation device includes a tire side device and a vehicle side device. The tire side device includes a vibration detection unit outputting a detection signal indicating a tire vibration magnitude, a signal processing unit, and a transmitter. The signal processing unit extracts a ground contact duration during which a portion of the tread corresponding to an arrangement position of the vibration detection unit is in contact with a ground, calculates a high frequency component level of the detection signal detected during the ground contact duration, counts cumulative rotation number of the tire, and corrects the level of the high frequency component based on the cumulative rotation number of the tire. The transmitter transmits corrected level of the high frequency component as road surface condition data. The vehicle side device estimates a road surface condition of the travelling road based on the received road surface condition data.
Abstract:
In a wheel position detecting device, a transmission angular position of a transmitter to transmit a frame from the transmitter to a receiver is changed by a predetermined angle each time the transmitter transmits the frame. A receiver acquires gear information indicating a tooth position of a gear rotating in association with a corresponding wheel, based on a detection signal of a wheel speed sensor. The receiver specifies to which wheels the transmitter is integrated, based on the tooth position of the gear at a reception timing of the frame.
Abstract:
A communication device changes an applied voltage output from a voltage circuit, and allows a capacitance measuring device to measure the respective capacitance values of a variable capacitance element before and after a change in the applied voltage. The communication device calculates a voltage correction value for correcting an initial variation of the capacitance value of the variable capacitance element using the respective capacitance values of the variable capacitance element before and after the change in the applied voltage, and respective applied voltage values before and after the change, and a correction voltage for canceling the initial variation in the capacitance value of the variable capacitance element, and outputs the correction voltage from the voltage circuit.
Abstract:
A communication device changes an applied voltage output from a voltage circuit, and allows a capacitance measuring device to measure the respective capacitance values of a variable capacitance element before and after a change in the applied voltage. The communication device calculates a voltage correction value for correcting an initial variation of the capacitance value of the variable capacitance element using the respective capacitance values of the variable capacitance element before and after the change in the applied voltage, and respective applied voltage values before and after the change, and a correction voltage for canceling the initial variation in the capacitance value of the variable capacitance element, and outputs the correction voltage from the voltage circuit.
Abstract:
In a wheel position detecting device, a receiver acquires gear information indicating a tooth position of a gear rotating in association with a corresponding wheel at a predetermined interval. In a wheel position detection, the receiver sets a variation allowance range based on the tooth position at a reception timing of a frame transmitted from a transmitter integrated to each wheel. When the tooth position of the gear at a subsequent reception timing of the frame is not within the variation allowance range, the receiver excludes the wheel corresponding to the gear from a candidate wheel. The receiver registers the wheel remaining last as the wheel to which the transmitter is integrated. The receiver performs the wheel position detection only when a wheel speed is higher than a predetermined threshold, so that the wheel position detection is performed based on an accurate tooth position.
Abstract:
In a wheel position detector for a vehicle, a transmitter on each wheel repeatedly transmits a data frame containing identification information when an angle of the transmitter reaches a transmission angle. A receiver for receiving the frame is mounted on a body of a vehicle and performs wheel position detection based on the frame to specify a target wheel from which the frame is transmitted. The receiver acquires a tooth position of a gear rotating with a corresponding wheel when receiving the frame and sets a variation allowable range based on the tooth position. The receiver specifies the target wheel by determining whether the tooth position falls within the variation allowable range. The transmitter changes the transmission angle at a predetermined time interval.
Abstract:
A first communication apparatus and a second communication apparatus are capable of wireless communication with each other. The first communication apparatus has a normal operation mode and a tuning mode that differs from the normal operation mode and allows a variable matching portion to adjust a matching state. When the tuning mode is selected, the first transmission portion transmits an operation mode transition request signal to the second communication apparatus. A first reception portion receives a tuning reference signal transmitted from the second communication apparatus in response to the operation mode transition request signal. A reception signal intensity measurement portion measures a reception signal intensity of the received tuning reference signal. The variable matching portion adjusts a matching state based on the measured reception signal intensity of the tuning reference signal.