Abstract:
An erroneous start is controlled based on vibrations of a tire, irrespective of a poor visibility or an algorithm of an image processing. A tire-side unit detects a vibration of a tire when the tire has collided with a wheel stop or the like, and outputs collision data to a vehicle-side unit. The vehicle-side unit determines an erroneous start of the vehicle. Therefore, the erroneous start of the vehicle can be controlled without being affected by the poor visibility or the algorithm of the image processing as in a case of utilizing a camera or a radar.
Abstract:
A power generation device is provided. A weight may vibrate in one direction as an axial direction in response to an external vibration. A beam may be arranged in at least one side with respect to the weight in the axial direction of the weight, and vibrate together with the weight. A piezoelectric element may be mounted on the beam. A guide may include a hollow guiding a movement of the weight in the axial direction. A stopper may be included in the weight. The stopper may restrict an amount of the movement of the weight in the axial direction within a predetermined amount. A stopper wall may stop the movement of the weight in the axial direction by contacting with the stopper.
Abstract:
In order to detect a road surface condition, a road surface condition estimation device extracts a detection signal of a portion that detects vibration in a tire tangential direction in a vibration detection and power generation unit which is in a ground contact section, for example, a vibration power generation element. In this case, it is identified that the vibration detection and power generation unit is in the ground contact section, based on whether a centrifugal force acting on the vibration detection and power generation unit is generated, or not, and it is identified that a time when no centrifugal force is generated is in the ground contact section. As a result, even if a pulse level of an output voltage of the vibration detection generation unit changes according to a traveling speed of the vehicle, the ground contact section can be accurately identified.
Abstract:
A road-surface-condition estimation device is configured by a tire-side device and a vehicle-side device so as to grasp a road surface condition based on road surface condition data transmitted from a tire-side device. As a result, the road surface condition or a road surface μ of a traveling road surface of a vehicle can be accurately detected, and a more accurate lane keeping control can be performed according to the detection result. In particular, since the tire-side device estimates the road surface condition by detecting the vibration of a ground contact surface of the tire, the road surface condition can be estimated more accurately. Therefore, the more accurate lane keeping control can be performed.
Abstract:
The communication system includes a first communication device, a second communication device, and a third communication device. The first communication device outputs a high frequency alternating current power, and a power receiving circuit of the second communication device receives the high frequency alternating current power via a second antenna. A power line is connected between the second antenna and the power receiving circuit. A first power line has a first semicircle portion and a second power line has a second semicircle portion. The first and second semicircle portions are combined together to provide a loop-shaped antenna. The third communication device receives the high frequency alternating current power output from the loop-shaped antenna. At least two of the first, second, or third communication devices transmit or receive communication signals using respective antennas. The first and second power lines are twisted with each other at a portion other than the loop-shaped antenna.
Abstract:
A wireless communication system includes a mobile device carried by a user and an in-vehicle apparatus equipped to a vehicle and communicatively connected with the mobile device. The in-vehicle apparatus includes a transmission unit, a transmission control unit, a reception determination unit, and a position determination unit. The transmission unit transmits low-frequency band request signals generated by spread modulating transmission data with predetermined spreading factors. The transmission control unit controls the transmission unit to generate and transmit first and second request signals having first and second attainable ranges by spread modulation using first and second spreading factors, respectively. The reception determination unit performs reception determination to response signal transmitted from the mobile device in response to the request signal. The position determination unit specifies the first attainable range or the second attainable range as a mobile device position area in response to a reception determination result.
Abstract:
A vehicle control device including a tire-side device and a vehicle-side device is provided. The tire-side device includes a vibration detection unit that outputs a detection signal corresponding to a magnitude of vibration of a tire, a signal processing unit that generates μ data representing a friction coefficient between the tire and a road surface by processing the detection signal, and a transmitter that transmits the μ data. The vehicle-side device includes a receiver that receives the μ data and a travel control unit that estimates the friction coefficient based on the μ data, acquires a braking distance of the vehicle based on the friction coefficient, and controls acceleration and deceleration of the vehicle based on the braking distance.
Abstract:
A road surface condition estimation device includes a tire side device and a vehicle side device. The tire side device includes a vibration detection unit outputting a detection signal indicating a tire vibration magnitude, a signal processing unit, and a transmitter. The signal processing unit extracts a ground contact duration during which a portion of the tread corresponding to an arrangement position of the vibration detection unit is in contact with a ground, calculates a high frequency component level of the detection signal detected during the ground contact duration, counts cumulative rotation number of the tire, and corrects the level of the high frequency component based on the cumulative rotation number of the tire. The transmitter transmits corrected level of the high frequency component as road surface condition data. The vehicle side device estimates a road surface condition of the travelling road based on the received road surface condition data.
Abstract:
A communication device changes an applied voltage output from a voltage circuit, and allows a capacitance measuring device to measure the respective capacitance values of a variable capacitance element before and after a change in the applied voltage. The communication device calculates a voltage correction value for correcting an initial variation of the capacitance value of the variable capacitance element using the respective capacitance values of the variable capacitance element before and after the change in the applied voltage, and respective applied voltage values before and after the change, and a correction voltage for canceling the initial variation in the capacitance value of the variable capacitance element, and outputs the correction voltage from the voltage circuit.
Abstract:
A communication device changes an applied voltage output from a voltage circuit, and allows a capacitance measuring device to measure the respective capacitance values of a variable capacitance element before and after a change in the applied voltage. The communication device calculates a voltage correction value for correcting an initial variation of the capacitance value of the variable capacitance element using the respective capacitance values of the variable capacitance element before and after the change in the applied voltage, and respective applied voltage values before and after the change, and a correction voltage for canceling the initial variation in the capacitance value of the variable capacitance element, and outputs the correction voltage from the voltage circuit.