摘要:
Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a bulky alkyl at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties.
摘要:
Compounds comprising the formula L1L2MX wherein L1, L2, and X are distinct bidentate ligands that form an octahedral complex on the metal M, wherein M is a metal with an atomic weight greater than 40. Compounds of this formula are sublimated more facilely than octahedral metal complexes where L1, L2, and X are not distinct bidentate ligands. Organic light emitting devices are also described wherein the emissive layer may comprise a host material containing an emissive molecule of formula L1L2MX, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including iridium complexes of the formula L1L2IrX wherein L1, L2, and X are distinct bidentate ligands.
摘要:
The present invention provides organoselenium compounds comprising dibenzoselenophene, benzo[b]selenophene or benzo[c]selenophene and their uses in organic light emitting devices.
摘要:
Novel phosphorescent metal complexes containing 2-phenylquinoline ligands with at least two substituents on the quinoline ring are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
摘要:
Novel heteroleptic iridium carbene complexes are provided, which contain phenyl imidazole moieties. In particular, ligands containing 2,4,6-trisubstituted N-phenyl imidazole fragments have highly desirable properties that make them suitable materials for use in OLED devices.
摘要:
Organometallic compounds comprising a germanium-containing substituent are provided. The compounds may be used in organic light emitting devices to provide improved device efficiency, line shape and lifetime. In particular, the compounds comprise a phenylquinoline or phenylisoquinoline ligand having a germanium-containing substituent on the quinoline or isoquinoline portion of the ligand. These compounds may be advantageously used as red emitters in the emissive layer of organic light emitting devices.
摘要:
Novel phosphorescent heteroleptic iridium complexes with phenylpyridine and dibenzo-containing ligands are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
摘要:
Organometallic compounds comprising a germanium-containing substituent are provided. The compounds may be used in organic light emitting devices to provide improved device efficiency, line shape and lifetime. In particular, the compounds comprise a phenylquinoline or phenylisoquinoline ligand having a germanium-containing substituent on the quinoline or isoquinoline portion of the ligand. These compounds may be advantageously used as red emitters in the emissive layer of organic light emitting devices.
摘要:
Novel heteroleptic iridium complexes are disclosed. The complexes contain a phenyl pyridine ligand and another ligand containing a dibenzofuran, dibenzothiophene, dibenzoselenophene, or carbazole linked to an imidazole or benzimidazole fragment. These complexes are useful materials when incorporated into OLED devices.
摘要:
Novel heteroleptic iridium carbene complexes are provided. The complexes have lower-than expected sublimation temperatures, which is beneficial for the processing of these materials in solid state applications. Selective substitution of the ligands provides for phosphorescent compounds that are suitable for use in a variety of OLED devices. The carbene complexes can also be used as materials in a hole blocking layer and/or an electron transport layer to improve device performance.