Abstract:
Novel phosphorescent metal complexes containing 2-phenylisoquinoline ligands with at least two substituents on the isoquinoline ring are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Novel materials are provided, having a single phenyl or a chain of phenyls where there is a nitrogen atom on each end of the single phenyl or chain of phenyls. The nitrogen atom may be further substituted with particular thiophene, benzothiophene, and triphenylene groups. Organic light-emitting devices are also provided, where the novel materials are used as a hole transport material in the device. Combinations of the hole transport material with specific host materials are also provided.
Abstract:
Devices containing a particular combination of organic compounds are provided. In particular, the devices contain twisted aryl compounds having extended conjugation (i.e., the twisted aryl is substituted with an additional aryl group) in combination with dibenzothiophene or dibenzofuran containing host materials. The organic light emitting devices may provide improved stability color, lifetime and manufacturing. Compounds containing a twisted aryl having extended conjugation are also provided.
Abstract:
Heteroleptic compounds containing phenylpyridine and phenylbenzimidazole are provided. The compounds may be used in organic light emitting devices, particularly as emissive dopants in the emissive layer of such devices.
Abstract:
Novel phosphorescent tetradentate platinum compounds of Formula I are provided. The complexes contain a dibenzo moiety, which allows for the creation of OLED devices with improved properties when compounds of Formula I are incorporated into such devices. Compounds of Formula I′ that comprise two ligands that contain a 5-membered carbocyclic or heterocyclic ring, one of which contains an imidazole ring with a twisted aryl group attached to N−1 and a second aromatic ring that is attached to the platinum via a carbon atom. These compounds may be advantageously used in OLEDs.
Abstract:
Novel heteroleptic iridium carbene complexes are provided, which contain at least two different carbene ligands. Selective substitution of the carbene ligands provides for phosphorescent compounds hat are suitable for use in a variety of OLED devices.
Abstract:
Novel phosphorescent tetradentate platinum compounds of Formula I are provided. The complexes contain a dibenzo moiety, which allows for the creation of OLED devices with improved properties when compounds of Formula I are incorporated into such devices. Compounds of Formula I′ that comprise two ligands that contain a 5-membered carbocyclic or heterocyclic ring, one of which contains an imidazole ring with a twisted aryl group attached to N−1 and a second aromatic ring that is attached to the platinum via a carbon atom. These compounds may be advantageously used in OLEDs.
Abstract:
Novel phosphorescent heteroleptic iridium complexes with phenylpyridine and dibenzo-containing ligands are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a bulky alkyl at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties.
Abstract:
Novel organometallic compounds are provided, which include a 2-phenylpyridine iridium (Irppy) complex having alkyl and/or aryl substituted ligands and a heteroleptic or a homoleptic nature. These materials may be advantageously used in OLEDs to tune evaporation temperature and solubility, narrow emission, and increase device efficiency.