Abstract:
Osmolarity measurement of a sample fluid, such as tear film, is achieved by depositing an aliquot-sized sample on a sample receiving substrate. The sample fluid is placed on a sample region of the substrate. Energy is imparted to the sample fluid and energy properties of the fluid can be detected to produce a sample fluid reading that indicates osmolarity of the sample fluid. An aliquot-sized volume can comprise, for example, a volume of no more than 20 microliters (μL). The aliquot-sized sample volume can be quickly and easily obtained, even from dry eye sufferers. The imparted energy can comprise electrical, optical or thermal energy. In the case of electrical energy, the energy property of the sample fluid can comprise electrical conductivity. In the case of optical energy, the energy property can comprise fluorescence. In the case of thermal energy, the measured property can be the freezing point of the sample fluid. The substrate can be packaged into a chip, such as by using semiconductor fabrication techniques. An ex vivo osmolarity sensor system that uses the chip can detect energy from the sample region and can provide an accurate osmolarity measurement without user intervention.
Abstract:
The present invention relates to nanoscale transduction systems that produce reversible signals to facilitate detection. In one respect, the invention relates to the analysis of molecular binding events using higher order signaling nanoscale constructs, or “nanomachines”, that allow nanostructures to be individually detectable, even in the midst of high background noise. Such systems are particularly useful for improving the performance of rare target detection methods, as well as being generally useful in any field in which sensitivity, discrimination and confidence in detection are important.
Abstract:
Provided herein is a pharmaceutical or oral care product for treating or preventing oral diseases that is prepared with proteoglycan 4 (PRG4) as an active ingredient, the preparing method thereof and the use thereof in manufacturing medicaments or oral care products for treating or preventing oral diseases and maintenance of oral health. PRG4 may have efficacy in maintaining oral health and treating or preventing oral disease. This secreted glycoprotein, which is also called lubricin and superficial zone protein, is known to protect against frictional forces, cell adhesion and protein deposition.
Abstract:
An ophthalmic composition, and methods of use thereof, including for treating ocular boundary deficiency, symptoms associated therewith, or undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface or for the treatment or care of ophthalmic devices. The ophthalmic composition comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The ophthalmic composition may also comprise one or more ophthalmically acceptable agents.
Abstract:
An ophthalmic composition, and methods of use thereof, including for treating ocular boundary deficiency, symptoms associated therewith, or undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface or for the treatment or care of ophthalmic devices. The ophthalmic composition comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The ophthalmic composition may also comprise one or more ophthalmically acceptable agents.
Abstract:
A fluid sample is measured with a tear film measuring system that includes a processing device that receives a sample chip comprising a sample region configured to contain an aliquot volume of sample fluid, the processing device configured to perform analyses of osmolarity and of one or more biomarkers within the sample fluid, wherein the analysis of biomarkers includes normalization of biomarker concentration values.
Abstract:
The present invention provides an ophthalmic device, and method of use thereof, for an individual wearing an ophthalmic lens to increase ocular surface boundary lubrication. The invention device comprises an ophthalmic lens and a sacrificial mechanism disposed on the ophthalmic lens, wherein the sacrificial mechanism comprises a plurality of surface bound receptors, such as PRG4, hyaluronic acid, and DNA aptamers, that reversibly bound to a lubricating composition comprising a gel forming agent, a surfactant, or a combination thereof, effectively inhibiting or preventing protein and lipid adsorption on the surface of the lens, and mitigate shear stress and reduce the friction between the lens and the ocular surface of the individual in need.
Abstract:
An ophthalmic composition, and methods of use thereof, including for treating ocular boundary deficiency, symptoms associated therewith, or undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface or for the treatment or care of ophthalmic devices. The ophthalmic composition comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The ophthalmic composition may also comprise one or more ophthalmically acceptable agents.
Abstract:
The present invention provides a pharmaceutical composition, and methods of use thereof, for treating ocular boundary deficiency, symptoms associated therewith, or undesired condition that is associated with or causes ocular boundary deficiency at the ocular surface. The pharmaceutical composition of the present invention comprises a human PRG4 protein, a lubricant fragment, homolog, or isoform thereof, suspended in an ophthalmically acceptable balanced salt solution. The pharmaceutical composition of the present invention may also comprise one or more ophthalmically acceptable agents selected from the group consisting of an ophthalmically acceptable demulcent, excipient, astringent, vasoconstrictor, emollient, sodium hyaluronate, hyaluronic acid, and surface active phospholipids, in a pharmaceutically acceptable carrier for topical administration.