摘要:
The invention relates to an imaging system for imaging an object (14) in an examination zone (5). The imaging system comprises a radiation source emanating radiation for illuminating the examination zone (5), a detection unit for generating detection values depending on the radiation after having passed the examination zone (5) and a moving unit for moving the 5 radiation source and the examination zone relative to each other along a first trajectory (15) and along a second trajectory (16). The position of at least one of the first trajectory (15) and of the second trajectory (16) with respect to the object is determined by a determination unit. The imaging system further comprises a reconstruction unit for reconstructing an image of the object (14) from the detection values using the determined position of the at least one of 10 the first trajectory (15) and the second trajectory (16).
摘要:
The invention relates to an imaging system for imaging a region of interest from energy-dependent projection data, wherein the imaging system comprises a projection data providing unit (1, 2, 3, 6, 7, 8) for providing energy-dependent first projection data of the region of interest. The imaging system comprises further an attenuation component image generation unit (12) for generating attenuation component images of the region of interest by generating energy-dependent second projection data using a model in which the projection data depend on attenuation component images. The component image generation unit (12) is adapted for generating the attenuation component images such that deviations of the second projection data from the first projection data are reduced.
摘要:
The invention relates to a CT imaging system for determining the flow of a substance within an object, wherein the CT imaging system comprises a polychromatic X-ray source and an energy-resolving X-ray detector for obtaining detection signals depending on the X-ray radiation after passing through the object. A calculation unit (12) determines a k-edge 5 component of the substance from the detection signals, and a reconstruction unit (13) reconstructs a time series of k-edge image from the determined k-edge component. A flow determination unit (14) determines flow values indicative for the flow within the object from the time series of k-edge images.
摘要:
Motion is one of the most critical sources of artifacts in helical conebeam CT. By comparing opposite rays corresponding to projection data, the amount of motion may be estimated and, in the following suppression of corresponding motion artifacts may be performed according to an exemplary embodiment of the present invention. The method of motion artifact compensation may be implemented in both approximate reconstruction algorithms and exact reconstruction algorithms. Advantageously, motion during the data acquisition is detected automatically and related motion artifacts may be suppressed adaptively.
摘要:
The invention relates to a computer tomography method in which a periodically moving object, in particular an organ of the body, is irradiated by a cone-shaped beam cluster (4) along a trajectory which runs on a cylindrical surface. The radiation transmitted through the object is measured by means of a detector unit (16), and at the same time the periodic movement of the object is recorded. In order to reconstruct the absorption distribution of the object, the measured values or the corresponding beams are rebinned to form a number of parallel projections, where for each of these projections a measured value is determined whose beam irradiates the object. The point in time at which this measured value was acquired is allocated to the respective projection. For the reconstruction, which may for example be carried out using a filtered back-projection, only projections whose allocated points in time lie within a predefined, specific time range (H1) within a period of the object movement are used.
摘要:
Spectral CT systems require cheap detectors with high energy resolution. According to an aspect of the present invention, a computer tomography apparatus comprises a detector element which is segmented into a plurality of sub-pixels. Each sub-pixel has at least two thresholds and counting channels, wherein the second threshold for each sub-pixel varies over the nominal detector element. This may provide for an improved energy-resolved photon counting.
摘要:
The invention relates to a computer tomography method in which a radiation source moves relative to an examination region along, in particular, a helical or circular trajectory. Measured values are acquired by a detector unit and a CT image of the examination region is reconstructed from these measured values. In the reconstruction, a complementary measured value, whose ray is oriented parallel to the ray of the respective measured value that has been acquired but in the opposite direction thereto, is determined for each of at least some measured values that lie within a reconstruction window. Redundant measured values are used to calculate the complementary measured values, with the help in particular of John's equation. The measured values for which complementary measured values have been determined are each replaced by a sum comprised a measured value that has been weighted and a complementary measured value that has been weighted, and a CT image is reconstructed, in particular by an exact method of reconstruction, from the replacement measured values, and where appropriate from acquired measured values, that lie within the reconstruction window.
摘要:
Motion is one of the most critical sources of artifacts in helical conebeam CT. By comparing opposite rays corresponding to projection data, the amount of motion may be estimated and, in the following suppression of corresponding motion artifacts may be performed according to an exemplary embodiment of the present invention. The method of motion artifact compensation may be implemented in both approximate reconstruction algorithms and exact reconstruction algorithms. Advantageously, motion during the data acquisition is detected automatically and related motion artifacts may be suppressed adaptively.
摘要:
An imaging modality, in particular a mobile CT system, comprises an imaging system for imaging an object to be examined. The imaging modality is also provided with an image guided surgery system which includes a position measuring system for measuring positions within the object and a data processor for deriving a transformation between positions within the object and the corresponding positions in the image. The position measuring device is also arranged to measure the position of the imaging system and the data processor is arranged to derive the transformation from the position and/or orientation of the imaging system. The position measuring system is notably an optical position measuring system which is arranged to measure the position of the gantry of the CT system. The data processor is arranged to derive the transformation from the measured position of the gantry. A highly accurate result is obtained when a calibration is carried out which links the position of the CT gantry to the position of the scanning plane.
摘要:
The invention relates to a computed tomography apparatus whose radiation source emits a conical radiation beam and is capable of scanning the examination zone along a trajectory in the form of a helix. The detector unit that is connected to the radiation source consists of a plurality of spatially separated detector segments that are mutually offset in the axial direction and each of which is arranged in such a manner that a projection onto the helix covers at least two neighboring turns of the helix. A CT image having an improved and spatially more uniformly distributed signal-to-noise ratio can be reconstructed from the CT data acquired by means of such a detector unit.