摘要:
An imaging method may include obtaining imaging data associated with a region of interest (ROI) of an object. The imaging data may correspond to a plurality of time-series images of the ROI. The imaging method may also include determining, based on the imaging data, a data set including a spatial basis and one or more temporal bases. The spatial basis may include spatial information of the imaging data. The one or more temporal bases may include temporal information of the imaging data. The imaging method may also include storing, in a storage medium, the spatial basis and the one or more temporal bases.
摘要:
Disclosed is a method for reconstructing a matrix image representative of a static scene under predetermined lighting conditions, including: —acquiring images, captured by a sensor using a lighting which is separate from one image to another; and —reconstructing the matrix image, in a reconstruction space separate from a native spectral space of the sensor, by determining, for each pixel, the spectral components by weighted combination of the spectral components of the native spectral space of the image sensor, the spectral components being photometrically adjusted and associated with the same pixel of each image of the captured images. the weighting is obtained by solving a linear equation system having at least the following parameters: a predetermined value matrix associated with the predetermined lighting conditions, a matrix representative of both the spectral response of the sensor and the spectral distribution of each lighting applied to each captured image.
摘要:
Described herein are technologies for facilitating three-dimensional imaging based on prior image data. In accordance with one aspect, deformable registration is performed to align three-dimensional (3D) image data to a sparse set of two-dimensional (2D) projection image data of at least one structure of interest. An iterative reconstruction scheme may then be performed to minimize a difference between the aligned 3D image data and the 2D image data.
摘要:
The image reconstruction method includes performing a forward projection of a first image of an object using a line integral-based value and a point spread function (PSF)-based value to acquire a forward projection value, and performing a back projection of raw image data using the forward projection value to acquire a second image of the object.
摘要:
A projection method of three-dimensional imaging includes the steps of respectively projecting a radiation field emitted from a radiation source with respect to one specific detector of a plurality of detectors and a three-dimensional sub-voxel onto two two-dimensional planes; rotating the specific detector to one specific axis of the two dimensional plane; performing a calculation for obtaining a sub-geometric factor corresponding to each specific detector and each voxel; and, finally, forming a geometric factor by combining each sub-geometric factor defined by each detector and each voxel.
摘要:
A method for acquiring a PET image with ultra high resolution using movement of a PET device is provided. In the related art, there is a limit in lowering of the resolution below a half (d/2) of the width of a detector. According to the provided method, an image with ultra high resolution, which can jump over the limit, can be acquired. Further, since utilization of larger detectors becomes possible without a loss of the resolution, the sensitivity of the PET can be improved, and thus an image of higher quality can be acquired.
摘要:
A method and system for high-resolution and parallelizable data processing, reconstruction, and deconstruction, uses arbitrary frequency-space (FS) or inverse frequency-space (IFS, such as image, audio, or video space) sample points in N dimensions. According to a preferred embodiment of the invention, a subset of optionally pre-processed and/or pre-conditioned N-dimensional FS data (or IFS data) is acquired (102) by a processing device (360), the data is optionally transformed (115) by “region scaling factors”, and the data is optionally reduced (116) in numerical significant digits. A “horizontal key” of data elements is calculated (120) on a processor (361), preferably in parallel, for each of an arbitrary set of x-coordinates in IFS (or FS). IFS “color” data (or FS data) are calculated (130) on a processor (361), preferably in parallel, at the x-coordinates corresponding to the horizontal keys. The IFS coordinates (or the FS coordinates) are arbitrary, and the reconstruction's calculated IFS data (or the deconstruction's calculated FS data) are optionally rotated or transposed (141) (such as for display purposes), and are thus formed (150) in a memory (363) or on an output device (365). The method can be applied to other subsets, such as in the N-dimensional case.
摘要:
The X-ray CT apparatus includes an X-ray tube, an X-ray detector, a rotation unit, a data generation unit, an image generation unit and a setting unit. The data generation unit generates data used in reconstruction processing of a CT image on a basis of an output of the X-ray detector. The image generation unit performs reconstruction processing of the CT image, the reconstruction processing using the data and a parameter value relating to at least one of an FDD and an FCD. The setting unit sets the parameter value used in the reconstruction processing using the data generated when the X-ray is emitted to the object, the parameter value being set based on CT values of a plurality of CT images obtained by a plurality of parameter values used in the reconstruction processing using the data generated when the X-ray is emitted to a phantom.
摘要:
A device and a method for obtaining densitometric images which comprise at least one radiological device, at least one depth sensor, and image processing means, which combine the radiological absorption information from the set of recorded radiological images obtained with the radiological systems with the distances of the traversed material, provided by the three-dimensional reconstruction of the objects obtained by means of the depth sensors.
摘要:
A method of calculating a system matrix for time-of-flight (TOF) list-mode reconstruction of positron-emission tomography (PET) images, the method including determining a TOF geometric projection matrix G including effects of object attenuation; estimating an image-blurring matrix R in image space; obtaining a diagonal matrix D that includes TOF-based normalization factor; and calculating the system matrix H as H=DGR.