Abstract:
A reactor includes a core body and an end plate fastened to at least one end of the core body. The end plate is formed from a plurality of end plate parts.
Abstract:
A motor drive device includes: reverse converter that converts DC power from a forward converter into AC power; a DC link capacitor provided in a DC link; a first current detection part that detects current flowing between the forward converter and capacitor; a second current detection part that detects current flowing between the capacitor and reverse converter; a voltage detection part that detects a voltage of the capacitor; and a capacitance decline detection part that obtains a change value in electric charge of the capacitor from a n integrated value by integrated a predetermined time of a difference in current values detected by the current detection parts, obtains a capacitance value of the capacitor based on the obtained change amount in electric charge and change amount in voltage of the capacitor for the predetermined time, and detects a capacitance decline in the capacitor based on the obtained capacitance value.
Abstract:
A motor driving device includes: a converter that converts AC power into DC power; a DC link capacitor provided for the DC link; an inverter that converts DC power into AC power for a motor; an initial charging circuit that charges the DC link capacitor; a potential difference determination unit that determines a potential difference between both ends of the initial charging circuit; a direct current detecting unit that detects direct current supplied to the initial charging circuit; an alternating current detecting unit that detects alternating current supplied to a motor; and an abnormality determination unit that determines that abnormal heat generation occurs in the initial charging circuit when the alternating current detecting unit detects alternating current and the direct current detecting unit detects direct current, in a case in which a potential difference occurs between both of the ends of the initial charging circuit.
Abstract:
A life determination device for a DC capacitor includes: a current detecting unit that detects a current outputted from a rectifier; a voltage detecting unit that detects a voltage of the DC capacitor; an initial charging device that performs initial charging of the DC capacitor up to a predetermined voltage value with the current outputted from the rectifier; a current integrating unit that integrates the current detected by the current detecting unit during a period of the initial charging; a capacitance estimating unit that calculates an estimated capacitance of the DC capacitor from the current integration value, the predetermined voltage value, and the voltage of the DC capacitor prior to the initial charging; and life determination unit that determines whether the DC capacitor is at the end of its life based on an initial capacitance value of the DC capacitor in an unused state and the estimated capacitance.
Abstract:
A reactor includes an outer peripheral iron core composed of a plurality of outer peripheral iron core portions and at least three iron core coils arranged inside the outer peripheral iron core. The at least three iron core coils are composed of iron cores coupled to the plurality of outer peripheral iron core portions and coils wound onto the iron cores. Gaps, which can be magnetically coupled, are formed between adjacent iron cores. The reactor further includes connection parts for connecting the plurality of outer peripheral iron core portions to each other.
Abstract:
A reactor according to an embodiment of the present disclosure includes a core body that includes an outer peripheral iron core composed of a plurality of outer peripheral iron core portions, at least three iron cores coupled to the outer peripheral iron core portions, and coils wound on the iron cores. A gap is formed between one of the iron cores and another of the iron cores adjacent to the one of the iron cores, so as to be magnetically connectable through the gap. The reactor includes a terminal base unit for electrically connecting the coils to an external device, and a temperature sensor attached to a surface of the terminal base unit, the surface being opposite the coils.
Abstract:
A reactor includes a core body, and the core body includes an outer peripheral iron core, at least three iron cores in contact with an inner surface of the outer peripheral iron core, or positioned to be coupled to the inner surface, and coils wound around the iron cores. A gap through which magnetic coupling is possible is formed between one iron core of the at least three iron cores and another iron core adjacent to the one iron core. The reactor includes an end plate attached to one end face of the core body, and the end plate includes a protruding portion that partially protrudes in a direction away from an outer circumferential surface of the core body.
Abstract:
To provide a motor drive device that suppresses voltage fluctuation of a DC link capacitor, as well as enabling for low cost and size reduction. A motor control unit sets a threshold of voltage at which to start regeneration to a first threshold in a case of an increased amount per unit time of a DC voltage value detected by a voltage detection part being less than a certain amount, and sets the threshold of voltage at which to start regeneration to a second threshold that is larger than the first threshold, in a case of the increased amount per unit time of the DC voltage value detected by the voltage detection part being at least a certain amount.
Abstract:
A core body of a reactor include an outer peripheral iron core, at least three iron cores arranged in contact with or coupled to an inner surface of the outer peripheral iron core, and at least three coils wound onto the at least three iron cores. Gaps, which can be magnetically coupled, are formed between the at least three iron cores. The reactor further includes a protection part which at least partially protects projection portions of the at least three coils which project from at least one end surface of the core body.
Abstract:
A reactor includes an outer peripheral iron core, at least three leg part iron cores arrayed on an inner surface side thereof, each of which is composed of a laminate of a plurality of electromagnetic steel sheets, and coils wound on the respective leg part iron cores, wherein each of the at least three leg part iron cores is arranged so that one end thereof in the direction of a winding axis of the coil is magnetically connected to the outer peripheral iron core and the other end in the direction of the winding axis is magnetically connected to the other end of another of the at least three leg part iron cores via a gap, and at least one of the leg part iron cores includes a weld part for welding at least a part of the plurality of electromagnetic steel sheets in the lamination direction.