Abstract:
In a motor driver of the present invention, voltage and current values measured by a voltage and current detector and a voltage value measured by a voltage detector are determined as first measurement results, in the state of turning on semiconductor switching elements connected between a positive terminal of a capacitor and motor coils. Voltage and current values measured by the voltage and current detector and a voltage value measured by the voltage detector are determined as second measurement results, in the state of, as to a group A, turning on a semiconductor switching element connected between the positive terminal of the capacitor and the motor coil, and as to a group B, turning on semiconductor switching elements connected between a negative terminal of the capacitor and the motor coil. The insulation resistance values are calculated between the motor coils of each group A or B and a ground.
Abstract:
A motor drive apparatus includes: a motor current detection unit; a brake release determination unit that determines that the brake is not released when the motor current detected when the motor is operated under a predetermined load by application of a voltage to a brake coil is larger than a current for when the brake is normally released; a brake coil voltage change unit that changes a voltage applied to the brake coil when it is determined that the brake is not released to a larger value; a change history storage unit that stores the voltage after being changed and change date and time; and a life prediction unit that calculates a predicted life of the brake apparatus based on the voltage after being changed and the change date and time and the previously stored failure-time brake coil voltage.
Abstract:
A motor driving apparatus includes a motor driving unit for converting DC voltage on a DC link into AC voltage when a switching device is turned on/off and outputting the AC voltage to an AC motor side, a gate driving circuit for turning on/off the switching device, a gate driving command generation unit for outputting either one of an ON command and an OFF command to the gate driving circuit, and an overcurrent detection unit for detecting an overcurrent with respect to a DC link current or an alternating current on the AC motor side, wherein, when the overcurrent detection unit detects the overcurrent, the gate driving command generation unit alternately outputs the ON command and the OFF command while gradually increasing a ratio of the OFF command to the ON command and ultimately outputs only the OFF command.
Abstract:
A corrosion detection circuit according to an embodiment of the present invention includes an insulating board; a test chip having a corrodible metal, mounted on the surface of the insulating board; a plurality of resistors each having a higher resistance value than the test chip after a change due to an environment including contact with the test chip and the adhesion of dust to the test chip; and a voltage detection circuit for detecting the output voltage of a divided voltage output point, when a voltage is applied to the test chip and a voltage dividing circuit using the plurality of resistors. The voltage detection circuit detects a break in the test chip by corrosion based on a variation in the output voltage.
Abstract:
A compact motor-drive unit wherein each component can be stably fixed to the unit. A motor-drive unit has a plurality of substrates each having a circuit for driving a motor; semiconductor devices mounted on the respective substrates; at least one smoothing capacitor mounted on at least one of the substrates; and a heat radiator having a heat-transferring surface adjacent to the semiconductors. The smoothing capacitor is positioned within a swept area formed by moving the first substrate arranged generally parallel to a base surface, in a counter-front direction, so that the smoothing capacitor is separated from the first substrate.
Abstract:
A conduction path structure of a robot in which a conduction path has a simplified structure is provided. A conduction path structure of a robot includes: a structural mechanism which functions as a support and has a conductor portion; an actuator that operates the structural mechanism; and a conduction path through which driving power and/or a control signal is supplied to the actuator, wherein the conduction path also serves as the conductor portion of the structural mechanism.
Abstract:
A robot includes a motor drive power source for converting a voltage supplied from a power source to a motor drive unit-grade voltage and outputting it, a motor drive unit for converting a motor drive unit-grade voltage output from the motor drive power source to a motor drive voltage and outputting it, a motor driven to be rotated by a motor drive voltage output by the motor drive unit, a robot arm on which the motor drive unit and the motor are arranged, and a robot controller which is provided independently of the robot arm and on which the motor drive power source is arranged.
Abstract:
A motor drive system enabling detection of cutting fluid deposited at a housing of electronic components. A housing holding electronic components of a motor drive system has top faces slanted with respect to the horizontal plane so as to guide the deposited cutting fluid. The housing further includes storage parts collecting the cutting fluid guided along the top faces. The storage parts may be graduated so as to enable the collected amount of the cutting fluid to be measured. The storage parts may be configured to be detachable from the housing.
Abstract:
A motor drive device assembly capable of suppressing differences in temperatures of motor drive devices depending on operational conditions. The motor drive device assembly includes a first motor drive device including a first heatsink, a second motor drive device located adjacent to the first motor drive device and including a second heatsink formed separately from the first heatsink, and a connection part connecting the first heatsink and the second heatsink to each other, to allow thermal conduction between the first heatsink and the second heatsink.
Abstract:
In a motor driver of the present invention, voltage and current values measured by a voltage and current detector and a voltage value measured by a voltage detector are determined as first measurement results, in the state of turning on semiconductor switching elements connected between a positive terminal of a capacitor and motor coils. Voltage and current values measured by the voltage and current detector and a voltage value measured by the voltage detector are determined as second measurement results, in the state of, as to a group A, turning on a semiconductor switching element connected between the positive terminal of the capacitor and the motor coil, and as to a group B, turning on semiconductor switching elements connected between a negative terminal of the capacitor and the motor coil. The insulation resistance values are calculated between the motor coils of each group A or B and a ground.