摘要:
An electric machine or assembly 10 including a housing 12, a stationary stator 14, two substantially identical and opposed rotors 16, 18, and a pair stationary field coils 22, 24. Field coils 22, 24 are selectively energizable to controllably vary the flux generated by assembly 10, thereby allowing assembly 10 to provide a relatively constant output torque, power, or voltage over a relatively wide range of operating speeds.
摘要:
The present invention provides a method for controlling an induction motor. The method comprises determining an input impedance of the motor at an operating point; determining an input electrical power to the motor at the operating point; and estimating a slip or shaft speed of the motor at the operating point from the input impedance and input electrical power.
摘要:
A bilayer transmission diffraction grating having antireflection lines having rectangular cross-section over grating lines having trapezoidal cross-section is described. The process-dependent grating line profile is accounted for by characterizing the grating line profile and performing electromagnetic wave diffraction simulations, whereby a grating duty cycle is selected that results in an improvement of overall diffraction efficiency and/or reducing polarization dependent loss of a diffraction grating having the characterized grating line profile. Grooves in the substrate between the grating lines further improve diffraction efficiency and reduce polarization dependent loss. The entire grating line profile, including the antireflection line, the grating line, and the groove in the substrate between the grating lines, can be defined using a single etch mask, which reduces process and equipment related manufacturing costs.
摘要:
Diffractive patterns are disposed on a MEMS substrate in the gaps between the MEMS micromirrors to reduce backreflection of light leaking through the gaps and reflected by the MEMS substrate. The diffractive patterns are silicon surface-relief diffraction gratings or silicon oxide gratings on silicon substrate. Sub-wavelength gratings are used to suppress higher orders of diffraction; 50% duty cycle surface relief gratings on a substrate having index of refraction close to 3 are used to suppress both reflected and transmitted zero orders of diffraction simultaneously. The gratings have lines running parallel or at a slight angle to the gaps, to prevent the diffracted light from re-entering the gaps.
摘要:
To reduce cross-talk between adjacent hot electrodes, the present invention provides a ground plane, which extends beneath each side of a MEMS mirror platform covering opposite edges of a hot electrode along each side thereof. The ground plane includes an overhang section extending between the mirror platform and the hot electrode forming a first gap between the hot electrode and the overhang section, and a second gap between the overhang section and the mirror platform. The method of the present invention enables highly accurate construction using lithographic patterning and deep reactive ion etching (DRIE).
摘要:
To reduce cross-talk between adjacent hot electrodes, the present invention provides a ground plane, which extends beneath each side of a MEMS mirror platform covering opposite edges of a hot electrode along each side thereof. The ground plane includes an overhang section extending between the mirror platform and the hot electrode forming a first gap between the hot electrode and the overhang section, and a second gap between the overhang section and the mirror platform. The method of the present invention enables highly accurate construction using lithographic patterning and deep reactive ion etching (DRIE).
摘要:
A micro-electro-mechanical (MEMs) mirror device for use in an optical switch is disclosed. A “piano”-style MEMs device includes an elongated platform pivotally mounted proximate the middle thereof by a torsional hinge. The middle portion of the platform and the torsional hinge have a combined width less than the width of the rest of the platform, whereby several of these “piano” MEMs devices can be positioned adjacent each other pivotally mounted about the same axis with only a relatively small air gap therebetween. In a preferred embodiment of the present invention specially designed for wavelength switching applications, a greater range of arcuate motion for a mirror mounted thereon is provided by enabling the platform to rotate about two perpendicular axes. The MEMs mirror device according to the preferred embodiment of the present invention enables the mirror to tilt about two perpendicular axes, by the use of an “internal” gimbal ring construction, which ensures that a plurality of adjacent mirror devices have a high fill factor, without having to rely on complicated and costly manufacturing processes. To limit the amount of electrical crosstalk between adjacent mirrors, shielding can be positioned between the electrodes. The shielding can extend upwardly from the substrate and/or downwardly from the undersurface of the mirrors. When both types of shielding are provided, one set is offset from the other to prevent abutment thereof, and to enable an overlapping effect, which enhances the protection.
摘要:
The present invention generally relates to industrial automation, and in particular to systems and methods that facilitate rendering data in an industrial automation environment. Specifically, the invention gathers data via a high-speed data collection device and transmits high-resolution data to a trend server. A trend server can batch or buffer the high-resolution data for transmission to a user interface, such as a Human Machine Interface. A run-time reduction modulo m (RTRm) component can index data to permit a reduction in data read time. A user interface can render the data at high resolution to provide the user with a real-time, seamless display of information.
摘要:
A micro-electro-mechanical (MEMs) mirror device for use in an optical switch is disclosed. A “piano”-style MEMs device includes an elongated platform pivotally mounted proximate the middle thereof by a torsional hinge. The middle portion of the platform and the torsional hinge have a combined width less than the width of the rest of the platform, whereby several of these “piano” MEMs devices can be positioned adjacent each other pivotally mounted about the same axis with only a relatively small air gap therebetween. In a preferred embodiment of the present invention specially designed for wavelength switching applications, a greater range of arcuate motion for a mirror mounted thereon is provided by enabling the platform to rotate about two perpendicular axes. The MEMs mirror device according to the preferred embodiment of the present invention enables the mirror to tilt about two perpendicular axes, by the use of an “internal” gimbal ring construction, which ensures that a plurality of adjacent mirror devices have a high fill factor, without having to rely on complicated and costly manufacturing processes. To limit the amount of electrical crosstalk between adjacent mirrors, shielding can be positioned between the electrodes. The shielding can extend upwardly from the substrate and/or downwardly from the undersurface of the mirrors. When both types of shielding are provided, one set is offset from the other to prevent abutment thereof, and to enable an overlapping effect, which enhances the protection.
摘要:
A micro-electro-mechanical (MEMs) mirror device for use in an optical switch is disclosed. A “piano”-style MEMs device includes an elongated platform pivotally mounted proximate the middle thereof by a torsional hinge. The middle portion of the platform and the torsional hinge have a combined width less than the width of the rest of the platform, whereby several of these “piano” MEMs devices can be positioned adjacent each other pivotally mounted about the same axis with only a relatively small air gap therebetween. In a preferred embodiment of the present invention specially designed for wavelength switching applications, a greater range of arcuate motion for a mirror mounted thereon is provided by enabling the platform to rotate about two perpendicular axes. The MEMs mirror device according to the preferred embodiment of the present invention enables the mirror to tilt about two perpendicular axes, by the use of an “internal” gimbal ring construction, which ensures that a plurality of adjacent mirror devices have a high fill factor, without having to rely on complicated and costly manufacturing processes.