Abstract:
A method for controlling a vacuum valve arranged between two vacuum chambers comprises a valve body with a valve opening, a closure member which closes the valve opening in a closed state of the vacuum valve and which releases the valve opening in an open state of the vacuum valve, wherein, for closing the valve opening by the closure member in the closed state of the vacuum valve, at least one flexible seal contacts a sealing surface of the vacuum valve, which sealing surface is acted upon by a pressing force in the closed state of the vacuum valve, an actuating device for opening and closing the vacuum valve with at least one actuator by which the seal is placed against the sealing surface for closing the vacuum valve, and with a control unit which controls this at least one actuator, pressure measurement values being supplied to this control unit as input signals from pressure sensors which detect the respective pressure in the two vacuum chambers, wherein a differential pressure between the two vacuum chambers is determined by the control unit and the magnitude of the pressing force acting on the seal in the closed state of the vacuum valve is controlled by the control unit depending on the determined differential pressure by controlling the at least one actuator.
Abstract:
A vacuum valve comprises a valve housing with a valve opening having a longitudinal axis and a valve seat, a valve plate which is displaceable in a straight line in a displacement direction between an open position in which it releases the valve opening and a closed position in which its contacts the valve seat of the valve housing and closes and seals the valve opening, this valve plate being arranged on at least one valve rod which is displaceable axial to the displacement of the valve plate, a flexible sealing ring which is arranged at a front side of the valve plate or at the valve seat of the valve housing, a sealing surface which is arranged at the valve seat of the valve housing or at the front side of the valve plate and which is contacted by the sealing ring in the closed position of the valve plate, wherein the sealing surface and the sealing ring are arranged in parallel planes which are inclined relative to the displacement direction of the valve plate around an axis extending at right angles to the displacement direction and at right angles to the longitudinal axis of the valve opening, and at least one sliding-spacing part which is arranged at the front side of the valve plate next to the sealing ring or sealing surface or at the valve seat next to the sealing surface or sealing ring and which forms a sliding bearing for the valve plate relative to the valve housing when closing the valve along a final section of the displacement path of the valve plate until the closed position of the valve plate is reached and which keeps the valve plate at a distance from the valve housing in the closed position of the valve plate and accordingly limits the pressing of the sealing ring.
Abstract:
A vacuum pipe for a part which is mounted so as to be movable and projects from outside a vacuum chamber into a vacuum in the vacuum chamber, comprises an opening in a wall of the vacuum chamber limiting the vacuum, with an inner side facing the vacuum and an outer side at which is provided an annular sealing surface surrounding the opening, an annular sealing surface at the part projecting through the opening into the vacuum from outside the vacuum, a sealing arrangement which is provided between the annular sealing surfaces of the wall and of the part and which comprises at least one sealing ring of elastic material, and a guide device which guides the part relative to the wall and by which at least a minimum axial pressing force is maintained on the at least one sealing ring in every position of the part, resulting in a deformation of the at least one sealing ring such that tightness is ensured, wherein the deformation of the sealing ring changes at least in areas of the sealing ring when the part moves relative to the wall.
Abstract:
A valve slide has a housing with a sealing surface which has portions located one behind the other seen in direction of the axis of a slide passage opening. The portions located one behind the other are connected to outwardly extending plane sealing surface portions through continuously extending curved portions. The imaginary generatrices of the sealing surface portions forming a sealing surface extend parallel to the axis of the slide passage openings. The sealing surface is finished. The closing member has a contact surface corresponding to the shape of the sealing member. The slide can be used in vacuum systems. The closing member is formed of one piece and can be subjected to high accelerating forces, so that the slide can be used for quick-closing valves and emergency valves.