摘要:
A rotating blade body is provided that can restrain vibrations of rotating blades effectively. The rotating blade body comprises rotor disc, a plurality of rotating blades being assembled so as to extend from the outer circumference of the rotor disc in a radial pattern, and sealing pins extending along the direction of the rotating shaft in the gaps between the platforms of the rotating blades being adjacent in circumferential direction. The sealing pins have a through-hole made therein, penetrating axially from one end surface to the other end surface.
摘要:
The gas turbine stationary blade comprises a stationary blade section provided therein with a passage for cooling air, an inner shroud for supporting the stationary blade section on the side of a discharge port of the cooling air, and a plurality of segments each of which includes at least one stationary blade section and at least one inner shroud. A low passage is pulled out from the discharge port of the cooling air, and the flow passage is introduced to a front edge corner section of the inner shroud and is extended rearward along a side edge of the inner shroud.
摘要:
The present invention provides a turbine moving blade, a turbine stationary blade, and a turbine split ring which are capable of restraining the deterioration and peeling-off of a thermal barrier coating easily and surely, and a gas turbine capable of enhancing the energy efficiency by increasing the temperature of combustion gas. The turbine moving blade provided in a turbine constituting the gas turbine includes a platform having a gas path surface extending in the combustion gas flow direction, and a blade portion erecting on the platform. The thermal barrier coating covering the gas path surface is formed so as to go around from the gas path surface to an upstream-side end face and a downstream-side end face of the outer peripheral faces of the platform.
摘要:
A seal ring (1) securing inner shroud members (32) of stationary blades (31) is provided with arm portions (2, 3) projecting along lower surfaces of end portions of the inner shroud members (32). Honeycomb seals (4a, 4b) are mounted on the arm portions (2, 3), respectively. The honeycomb seal (4a) is disposed opposite fins (11a) provided on a rotor arm portion (11) of a platform (22) of a moving blade (21) so that a predetermined clearance (t) can be maintained between the honeycomb seal and the fins. On the other hand, the honeycomb seal (4b) is disposed opposite fins (14b) provided on a seal portion (14a) of a sealing plate (14) of the moving blade (21) so that a predetermined clearance (t) can be maintained between the honeycomb seal and the fins. The inner shroud members (32) undergo deformation after operation of the gas turbine. However, because the honeycomb seals (4a, 4b) are mounted on the arm portions (3, 2), respectively, of the seal ring (1) disposed separately and independently from the inner shroud members (32), the honeycomb seals (4a, 4b) can remain unaffected by the deformation of the inner shroud members (32), whereby the predetermined clearances (t) can be consistently maintained.
摘要:
A gas turbine rotor blade has a plurality of first cooling holes for the flow of a cooling gas bored in a blade portion along its lengthwise direction and a plurality of second cooling holes for flow of the cooling gas bored in a shroud along its plane direction so as to communicate with the first cooling holes, and is constructed such that the cooling gas can flow in a uniform distribution. The plurality of the first cooling holes 3 for flow of the cooling gas are bored in the blade portion 2 and the plurality of the second cooling holes 5 for flow of the cooling gas are bored in the shroud 1 along its plane direction. The second cooling holes 5 communicate with the first cooling holes 3, hole to hole, via two-step holes 4, and the second cooling holes 5 are bored alternately on the dorsal side and the ventral side of the rotor blade.
摘要:
In a cooled stationary blade assembly for a gas turbine, an interior of a blade and an inner shroud are cooled by steam to eliminate the use of air cooling. Steam passages 33A, 33B, 33C, 33D, 33E and 33F are provided in the stationary blade 30. The cooling steam 39 is introduced from the steam passage 33A on the front edge side through an outer shroud and passes, in order, through the steam passages 33B, 33C, 33D, and 33E to flow into the steam passage 33F at the rear edge side to cool the interior of the blade, and is recovered through the outer shroud from the upper portion of the steam passage 33F. A portion of the steam from the steam passage 33A is introduced into the inner shroud 31, enters to steam passages 20 from a steam introduction passage 22, branches to the right and left through both end portions, and flows out into the steam passage 33F at the rear edge from a steam discharge passage 21. Not only the interior of the blade, but also the interior of the inner shroud 31 is cooled by the steam so that the cooling air is dispensed with.
摘要:
In the present disclosure, an air pipe extends through a stationary blade between outer and inner shrouds. Further, an air passage is directed to a lower portion of the stationary blade and is communicated with the air pipe so that a serpentine cooling passage is formed. The air enters a cavity from the air passage and is discharged to a gas passage through an air hole, a passage and a seal. Thus, the cavity is sealed at a high pressure. Cooling air is supplied from the air passage to a rotating blade through a cooling air hole, a cooling air chamber, a radial hole and a lower portion of a platform. The stationary blade is cooled by the air through the air passage. The cooling air can be supplied to the rotating blade at a low temperature and a high pressure as they are. Accordingly, the air can be also supplied to the rotating blade when a rotor is cooled by vapor.
摘要:
A mechanism for cooling the platform for the drive blades of a gas turbine uses a simple configuration which reliably cools the platform. The mechanism includes cooling channels in the interior of the platform which open out from one of the cooling air channels for cooling the turbine blades and which exit the platform through the edge nearest the tail. Cooling channels in the platform open out from the entrance to blade cooling channels, travel from the head of the blade along the blade sides, and exit through the edge near the tail of the blade. This structure diverts a portion of the cooling air entering the blade from the cooling channel in the base in order to cool the platform. Cooling air channels may extend from an enclosed air space below the platform to the upper surface of the platform at the front or rear side of the blade. Air channels may also extend on the rear of the turbine blade obliquely from the underside of the platform to the trailing edge of the platform. These channels or combinations thereof constitute a cooling structure through which air can flow to cool a platform for the drive blades of a gas turbine in an efficient and effective manner.
摘要:
A gas turbine comprises: a first closed circuit in which cooling gas is supplied to a casing, allowed to pass through stationary blades, and removed to the outside of casing after cooling the stationary blades; a second closed circuit in which cooling air is supplied to the casing, allowed to pass through moving blades, and removed to the outside of casing after cooling the moving blades; a cooler for cooling the cooling gas in the first and second closed circuits; and a booster for pressurizing and circulating the cooling gas cooled by the cooler.Also, A gas turbine comprises: a first closed circuit in which cooling air cooled after being extracted from a combustor plenum is allowed to pass through stationary blades successively to cool the stationary blades, and then recovered and returned to a compressor on the upstream side of the combustor plenum; and a second closed circuit in which cooling air cooled after being extracted from the combustor plenum is allowed to pass through moving blades successively to cool the moving blades, and then recovered and returned to the compressor.
摘要:
A gas turbine stationary blade unit in which two stationary blades are formed in a single segment by divided shrouds functions to lessen the occurrence of cracks. Two stationary blades 1a, 1b are fixed to an outer shroud and an inner shroud, respectively. Each shroud is divided into two sections 2a, 2b and 3a, 3b. Flanges 4a, 4b are provided to connect the section together by bolts via boltholes 7. Likewise, flanges 5a, 5b are provided to form a similar connection or joint. If the two stationary blades 1a, 1b are fixed in a single segment by the shrouds which are not divided, a restraining force becomes larger, local stress occurs due to thermal stress and the frequency of crack occurrence increases. However, since the shrouds are divided respectively into two parts and jointed together by bolts, the crack occurrence is lessened. Also, pinholes are provided in opposing faces at the divided portion of the shrouds. Also, pins are inserted into the pinholes for connection of the divided shrouds, thereby relative movement between the divided shrouds is prevented and a strong jointed blade unit is provided.