Abstract:
Systems and methods are provided for radiant heating by PTC radiant patches. A radiant heating system for warming an occupant of an enclosed space includes patches to radiate heat into the enclosed space toward the occupant. A power supply supplies electric power to the patches. A controller controls the electric power supplied to the patches based on a temperature in the enclosed space and locations of the patches within the enclosed space.
Abstract:
A full-vehicle thermal model of a subject vehicle including a plurality of components can be generated. An experimental design includes input variables and output variables for each of the components under steady-state operating conditions. A meta-model is generated for each of the components based upon the input variables and the output variables. A time history including a time-based variation of the input variables is obtained for a plurality of drive cycles. A time history for a heat transfer coefficient and a film temperature for each of the components is determined based upon the meta-models for the components and the time histories for the plurality of input variables. The time histories for the heat transfer coefficient and the film temperature for the components are provide to a lumped-parameter thermal solver as time-varying boundary conditions, and a time-temperature profile for one of the components is determined employing the lumped-parameter thermal solver.
Abstract:
A thermal conditioning system for an inductive charging system. An open enclosure charging unit includes at least one surface generating an electromagnetic field for inductively charging a portable device. A primary conduit coupled to the open enclosure charging unit. The primary conduit outputs conditioned air to the open enclosure charging unit. The conditioned air output by the primary conduit maintains a temperature of the portable device at a predetermined temperature range within the open enclosure charging unit.
Abstract:
A system, for inhibiting ice formation on a vehicle surface, and de-icing if determined needed to remove any frozen matter formed on the surface, including an anti-icing reservoir, a fluid-selecting control valve, and code that causes a processor to perform operations including determining whether the vehicle is parked, initiating, if parked, activation of, or obtaining of readouts from, any local sensors or routines to be used to determine whether a condition triggering initiation of an anti-freezing cycle is present. The operations include commencing, if triggered, an anti-icing cycle, including initiating changing of the fluid-selection valve to select the anti-freezing reservoir, and initiating pumping of the anti-icing fluid from the anti-icing reservoir to and through a fluid-dispensing nozzle, and onto the surface for inhibiting bonding of frozen material on the surface and/or remove any already formed frozen material on the surface.
Abstract:
A thermal conditioning system for an inductive charging system. An open enclosure charging unit includes at least one surface generating an electromagnetic field for inductively charging a portable device. A primary conduit coupled to the open enclosure charging unit. The primary conduit outputs conditioned air to the open enclosure charging unit. The conditioned air output by the primary conduit maintains a temperature of the portable device at a predetermined temperature range within the open enclosure charging unit.