Abstract:
Certain example embodiments of this invention relate to ruggedized switchable glazings, and/or methods of making the same. The PDLC stack of certain example embodiments includes an outer substrate, a low-E UV blocking coating deposited on an inner surface of the outer substrate, a first PVB or EVA laminate, a first PET layer, a first TCO layer, the PDLC layer, a second TCO layer, a second PET layer, a second PVB or EVA laminate, and an inner substrate. The substrates may be glass substrates. The low-E UV blocking coating may include at least two layers of or including silver and/or may include one or more IR layers. Thus, certain example embodiments may advantageously reduce one or more problems associated with residual haze, color change, flicker, structural changes in the polymer and/or the LC, degradations in state-switching response times, delamination, etc. The PDLC stack of certain example embodiments may be used in connection with any form of coated article, such as, for example, windows, windshields, IG units, etc.
Abstract:
Certain example embodiments relate to vacuum insulating glass units having edge seals formed in connection with solder alloys that, when reactively reflowed, wet metallic coatings pre-coated on the glass substrates' perimeters, and/or associated methods. The alloys may be based on materials that form seals at temperatures that will not de-temper glass and/or decompose a laminate, and/or remain hermetic and lack porous structures in their bulks. Example alloys may be based on inter-metallics of Sn and one or more materials selected from post-transition metals or metalloids; Zintl anions (e.g., In, Bi, etc.) from Group 13, 14, 15, or 16; and transition metals (e.g., Cu, Ag, Ni, etc.); and excludes Pb. Thin film coatings in certain example embodiments work with the solder material to form robust and durable hermetic interfaces. Because low temperatures are used, certain example embodiments can use compliant and visco-elastic spacer technology based on lamellar structures and/or the like.
Abstract:
Certain example embodiments relate to vacuum insulating glass units having edge seals based on solder alloys that, when reactively reflowed, wet metallic coatings pre-coated on the glass substrates' perimeters, and/or associated methods. The alloys may be based on materials that form a seal at temperatures that will not de-temper glass and/or decompose a laminate, and/or remain hermetic and lack porous structures in their bulks. Example alloys may be based on inter-metallics of Sn and one or more additional materials selected from post-transition metals or metalloids; Zintl anions (e.g., In, Bi, etc.) from Group 13, 14, 15 or 16; and transition metals (e.g., Cu, Ag, Ni, etc.); and excludes Pb. Thin film coatings in certain example embodiments work with the solder material to form robust and durable hermetic interfaces. Because low temperatures are used, certain example embodiments can use compliant and visco-elastic spacer technology based on lamellar structures and/or the like.
Abstract:
A method of making a heat treated (HT) or heat treatable coated article. A method of making a coated article includes a step of heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer of or including zinc oxide. Treating the zinc oxide inclusive release layer with plasma including oxygen (e.g., via ion beam treatment) improves thermal stability and/or quality of the product. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed.
Abstract:
Certain example embodiments of this invention relate to electrochromic (EC) devices, assemblies incorporating electrochromic devices, and/or methods of making the same. More particularly, certain example embodiments of this invention relate to improved EC materials, EC device stacks, high-volume manufacturing (HVM) compatible process integration schemes, and/or high-throughput low cost deposition sources, equipment, and factories.
Abstract:
Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
Abstract translation:本发明的某些示例性实施方案涉及石墨烯作为透明导电涂层(TCC)的用途。 在某些示例性实施例中,在烃类气体(例如,C 2 H 2,CH 4等)上在异质外延(例如在催化剂薄膜上)大面积生长的石墨烯薄膜。 某些示例性实施例的石墨烯薄膜可以是掺杂的或未掺杂的。 在某些示例性实施例中,一旦形成的石墨烯薄膜可以从它们的载体基底上剥离并转移到接收基底,例如包含在中间或最终产品中。 以这种方式生长,提升和转移的石墨烯可能表现出低的薄层电阻(例如,当掺杂时小于150欧姆/平方和较低)和高透射率值(例如,至少在可见光和红外光谱中)。
Abstract:
In certain example embodiments, a coated article includes respective layers including hydrogenated diamond-like carbon (DLC) and zirconium nitride before heat treatment (HT). During HT, the hydrogenated DLC acts as a fuel which upon combustion with oxygen produces carbon dioxide and/or water. The high temperature developed during this combustion heats the zirconium nitride to a temperature(s) well above the heat treating temperature, thereby causing the zirconium nitride to be transformed into a new post-HT layer including zirconium oxide that is very scratch resistant and durable.